We study the regularity of a conjugacy between an Anosov automorphism $ L $ of a nilmanifold $ N/\Gamma $ and a volume-preserving, $ C^1 $-small perturbation $ f $. We say that $ L $ is locally Lyapunov spectrum rigid if this conjugacy is $ C^{1+} $ whenever $ f $ is $ C^{1+} $ and has the same volume Lyapunov spectrum as $ L $. For $ L $ with simple spectrum, we show that local Lyapunov spectrum rigidity is equivalent to $ L $ satisfying both an irreducibility condition and an ordering condition on its Lyapunov exponents.
Citation: |
Figure 1. A diagrammatic depiction of the weak and strong foliations illustrating the points involved in the definition of the weak and strong distances. The strong distance between $ q $ and $ r $ is the distance from $ z $ to $ q $ along the $ \mathscr{S}_{i+1}^u $ foliation. The weak distance between $ q $ and $ r $ is the distance between $ z $ and $ r $ along the $ \mathscr{W}_i^u $ foliation
[1] | E. Breuillard, Geometry of locally compact groups of polynomial growth and shape of large balls, Groups Geom. Dyn., 8 (2014), 669-732. doi: 10.4171/GGD/244. |
[2] | A. Brown, Smoothness of stable holonomies inside center-stable manifolds and the $C^2$ hypothesis in Pugh-Shub and Ledrappier-Young theory, preprint, arXiv: 1608.05886. |
[3] | C. Butler, Characterizing symmetric spaces by their Lyapunov spectra, preprint, arXiv: 1709.08066. |
[4] | J.-P. Conze and J.-C. Marcuard, Conjugaison topologique des automorphismes et des translations ergodiques de nilvariétés, Ann. Inst. H. Poincaré Sect. B (N.S.), 6 (1970), 153-157. |
[5] | Y. Cornulier, Gradings on Lie algebras, systolic growth, and cohopfian properties of nilpotent groups, Bull. Soc. Math. France, 144 (2016), 693-744. doi: 10.24033/bsmf.2725. |
[6] | R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems. II, Comm. Math. Phys., 109 (1987), 369-378. doi: 10.1007/BF01206141. |
[7] | R. de la Llave, Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems, Comm. Math. Phys., 150 (1992), 289-320. doi: 10.1007/BF02096662. |
[8] | M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011. doi: 10.1007/978-0-85729-021-2. |
[9] | J. Eldering, Normally Hyperbolic Invariant Manifolds: The Noncompact Case, Atlantis Studies in Dynamical Systems, 2, Atlantis Press, Paris, 2013. doi: 10.2991/978-94-6239-003-4. |
[10] | A. Erchenko, Flexibility of Lyapunov exponents with respect to two classes of measures on the torus, preprint, arXiv: 1909.11457. |
[11] | J. Franks, Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc., 145 (1969), 117-124. doi: 10.1090/S0002-9947-1969-0253352-7. |
[12] | A. Gogolev, Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori, J. Mod. Dyn., 2 (2008), 645-700. doi: 10.3934/jmd.2008.2.645. |
[13] | A. Gogolev, Rigidity lecture notes, 2019, available at https://people.math.osu.edu/gogolyev.1/index_files/CIRM_notes_all.pdf. |
[14] | A. Gogolev, B. Kalinin and V. Sadovskaya, Local rigidity for Anosov automorphisms, Math. Res. Lett., 18 (2011), 843-858. doi: 10.4310/MRL.2011.v18.n5.a4. |
[15] | A. Gogolev, B. Kalinin and V. Sadovskaya, Local rigidity of Lyapunov spectrum for toral automorphisms, Israel J. Math., 238 (2020), 389-403. doi: 10.1007/s11856-020-2028-6. |
[16] | A. Gogolev, P. Ontaneda and F. R. Hertz, New partially hyperbolic dynamical systems I, Acta Math., 215 (2015), 363-393. doi: 10.1007/s11511-016-0135-3. |
[17] | Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France, 101 (1973), 333-379. |
[18] | M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. |
[19] | M. Jiang, Y. B. Pesin and R. de la Llave, On the integrability of intermediate distributions for Anosov diffeomorphisms, Ergodic Theory Dynam. Systems, 15 (1995), 317-331. doi: 10.1017/S0143385700008397. |
[20] | J.-L. Journé, A regularity lemma for functions of several variables, Rev. Mat. Iberoamericana, 4 (1988), 187-193. doi: 10.4171/RMI/69. |
[21] | B. Kalinin, Livšic theorem for matrix cocycles, Ann. of Math. (2), 173 (2011), 1025-1042. doi: 10.4007/annals.2011.173.2.11. |
[22] | B. Kalinin, A. Katok and F. R. Hertz, Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\mathbb{Z}^k$ actions with Cartan homotopy data", J. Mod. Dyn., 4 (2010), 207-209. doi: 10.3934/jmd.2010.4.207. |
[23] | A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, 1995. doi: 10.1017/CBO9780511809187. |
[24] | S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. |
[25] | F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2), 122 (1985), 509-539. doi: 10.2307/1971328. |
[26] | A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math., 96 (1974), 422-429. doi: 10.2307/2373551. |
[27] | T. L. Payne, Anosov automorphisms of nilpotent Lie algebras, J. Mod. Dyn., 3 (2009), 121-158. doi: 10.3934/jmd.2009.3.121. |
[28] | C. Pugh, M. Shub and A. Wilkinson, Hölder foliations, Duke Math. J., 86 (1997), 517-546. doi: 10.1215/S0012-7094-97-08616-6. |
[29] | M. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 68, Springer-Verlag, New York-Heidelberg, 1972. |
[30] | V. A. Rokhlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Translation, 1952 (1952), 55 pp. |
[31] | R. Saghin and J. Yang, Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Adv. Math., 355 (2019), 45 pp. doi: 10.1016/j.aim.2019.106764. |
[32] | S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817. doi: 10.1090/S0002-9904-1967-11798-1. |
[33] | J. Yang, Entropy along expanding foliations, preprint, arXiv: 1601.05504. |
A diagrammatic depiction of the weak and strong foliations illustrating the points involved in the definition of the weak and strong distances. The strong distance between