We construct a rigid, rank 1, prime transformation that is not quasi-simple and whose self-joinings form a Poulsen simplex. This seems to be the first example of a prime system whose self-joinings form a Poulsen simplex.
Citation: |
[1] | O. N. Ageev, The generic automorphism of a Lebesgue space conjugate to a $G$-extension for any finite abelian group $G$, Dokl. Akad. Nauk., 374 (2000), 439-442. |
[2] | O. N. Ageev, A typical dynamical system is not simple or semisimple, Ergodic Theory Dynam. Systems, 23 (2003), 1625-1636. doi: 10.1017/S0143385703000075. |
[3] | J. Chaika, Self joinings of rigid rank one transformations arise as strong operator topology limits of convex combinations of powers, arXiv: 1901.08695. |
[4] | J. Chaika and A. Eskin, Self-joinings for $3$-IETs, to appear, J. Eur. Math. Soc. (JEMS). |
[5] | A. I. Danilenko, On simplicity concepts for ergodic actions, J. Anal. Math., 102 (2007), 77-117. doi: 10.1007/s11854-007-0017-x. |
[6] | A. I. Danilenko and A. del Junco, Cut-and-stack simple weakly mixing map with countably many prime factors, Proc. Amer. Math. Soc., 136 (2008), 2463-2472. doi: 10.1090/S0002-9939-08-09154-5. |
[7] | A. del Junco, A simple map with no prime factors, Israel J. Math., 104 (1998), 301-320. doi: 10.1007/BF02897068. |
[8] | A. del Junco and D. J. Rudolph, A rank-one, rigid, simple, prime map, Ergodic Theory Dynam. Systems, 7 (1987), 229-247. doi: 10.1017/S0143385700003977. |
[9] | A. del Junco, M. Rahe and L. Swanson, Chacon's automorphism has minimal self joinings, J. Analyse Math., 37 (1980), 276-284. doi: 10.1007/BF02797688. |
[10] | S. Ferenczi, C. Holton and L. Q. Zamboni, Joinings of three-interval exchange transformations, Ergodic Theory Dynam. Systems, 25 (2005), 483-502. doi: 10.1017/S0143385704000811. |
[11] | H. Furstenberg, The structure of distal flows, Amer. J. Math., 85 (1963), 477-515. doi: 10.2307/2373137. |
[12] | H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981. |
[13] | E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/surv/101. |
[14] | E. Glasner, B. Host and D. Rudolph, Simple systems and their higher order self-joinings, Israel J. Math., 78 (1992), 131-142. doi: 10.1007/BF02801575. |
[15] | E. Glasner and B. Weiss, A simple weakly mixing transformation with nonunique prime factors, Amer. J. Math., 116 (1994), 361-375. doi: 10.2307/2374933. |
[16] | P. R. Halmos, In general a measure preserving transformation is mixing, Ann. of Math. (2), 45 (1944), 786-792. doi: 10.2307/1969304. |
[17] | É. Janvresse, E. Roy and T. de la Rue, Poisson suspensions and Sushis, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 1301-1334. doi: 10.24033/asens.2346. |
[18] | É. Janvresse, A. A. Prikhod'ko, T. de la Rue and V. V. Ryzhikov, Weak limits of powers of Chacon's automorphism, Ergodic Theory Dynam. Systems, 35 (2015), 128-141. doi: 10.1017/etds.2013.49. |
[19] | É. Janvresse, T. de la Rue and V. Ryzhikov, Around King's rank-one theorems: Flows and $\Bbb Z^n$-actions, Dynamical Systems and Group Actions, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012,143–161. doi: 10.1090/conm/567/11233. |
[20] | A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory, in Handbook in Dynamical Systems, 1B, Elsevier, 2005,649–743. doi: 10.1016/S1874-575X(06)80036-6. |
[21] | J. King, The commutant is the weak closure of the powers, for rank-$1$ transformations, Ergodic Theory Dynam. Systems, 6 (1986), 363-384. doi: 10.1017/S0143385700003552. |
[22] | J. L. King, Joining-rank and the structure of finite rank mixing transformations, J. Analyse Math., 51 (1988), 182-227. doi: 10.1007/BF02791123. |
[23] | J. King, Flat stacks, joining closure and genericity, preprint, available from: http://squash.1gainesville.com/PDF/flatstacks.pdf |
[24] | M. Lemańczyk, F. Parreau and E. Roy, Joining primeness and disjointness from infinitely divisible systems, Proc. Amer. Math. Soc., 139 (2011), 185-199. doi: 10.1090/S0002-9939-2010-10457-4. |
[25] | J. Lindenstrauss, G. Olsen and Y. Sternfeld, The Poulsen simplex, Ann. Inst. Fourier (Grenoble), 28 (1978), 91-114. doi: 10.5802/aif.682. |
[26] | W. Parry, Zero entropy of distal and related transformations, in Topological Dynamics (Symp. at Colorado State University, (1967)), Benjamin, New York, 1968,383–389. |
[27] | F. Parreau and E. Roy, Prime Poisson suspensions, Ergodic Theory Dynam. Systems, 35 (2015), 2216-2230. doi: 10.1017/etds.2014.32. |
[28] | D. J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications, J. Analyse Math., 35 (1979), 97-122. doi: 10.1007/BF02791063. |
[29] | V. V. Ryzhikov, Bounded ergodic constructions, disjointness, and weak limits of powers, Trans. Moscow Math. Soc., (2013), 165–171. doi: 10.1090/s0077-1554-2014-00214-4. |
[30] | J.-P. Thouvenot, Les systèmes simples sont disjoints de ceux qui sont infiniment divisibles et plongeables dans un flot, Colloq. Math., 84/85 (2000), 481-483. doi: 10.4064/cm-84/85-2-481-483. |
[31] | W. A. Veech, A criterion for a process to be prime, Monatsh. Math., 94 (1982), 335-341. doi: 10.1007/BF01667386. |
[32] | P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[33] | R. J. Zimmer, Extensions of ergodic actions and generalized discrete spectrum, Bull. Amer. Math. Soc., 81 (1975), 633-636. doi: 10.1090/S0002-9904-1975-13770-0. |
[34] | R. J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math., 20 (1976), 555-588. doi: 10.1215/ijm/1256049648. |