We construct some positive entropy automorphisms of rational surfaces with no periodic curves. The surfaces in question, which we term tri-Coble surfaces, are blow-ups of $ \mathbb P^2$ at 12 points which have contractions down to three different Coble surfaces. The automorphisms arise as compositions of lifts of Bertini involutions from certain degree $1$ weak del Pezzo surfaces.
Citation: |
[1] |
H. F. Baker, Principles of Geometry. Volume 6. Introduction to the Theory of Algebraic Surfaces and Higher Loci, Cambridge Library Collection, Cambridge University Press, Cambridge, 2010.
![]() ![]() |
[2] |
E. Bedford and K. Kim, Periodicities in linear fractional recurrences: Degree growth of birational surface maps, Michigan Math. J., 54 (2006), 647-670.
doi: 10.1307/mmj/1163789919.![]() ![]() ![]() |
[3] |
E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Linear fractional recurrences, J. Geom. Anal., 19 (2009), 553-583.
doi: 10.1007/s12220-009-9077-8.![]() ![]() ![]() |
[4] |
E. Bedford and K. Kim, Continuous families of rational surface automorphisms with positive entropy, Math. Ann., 348 (2010), 667-688.
doi: 10.1007/s00208-010-0498-2.![]() ![]() ![]() |
[5] |
J. Blanc, Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces, Indiana Univ. Math. J., 62 (2013), 1143-1164.
doi: 10.1512/iumj.2013.62.5040.![]() ![]() ![]() |
[6] |
A. B. Coble, The {t}en {n}odes of the {r}ational {s}extic and of the {C}ayley {s}ymmetroid, Amer. J. Math., 41 (1919), 243-265.
doi: 10.2307/2370285.![]() ![]() ![]() |
[7] |
I. V. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9781139084437.![]() ![]() ![]() |
[8] |
J. Lesieutre, Code for "{T}ri-{C}oble surfaces and their automorphisms'', ScholarSphere, Penn State University Libraries, 2021.
doi: 10.26207/xwyq-hc68.![]() ![]() |
[9] |
B. Maskit, On {P}oincaré's theorem for fundamental polygons, Advances in Math., 7 (1971), 219-230.
doi: 10.1016/S0001-8708(71)80003-8.![]() ![]() ![]() |
[10] |
C. T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 49–89.
doi: 10.1007/s10240-007-0004-x.![]() ![]() ![]() |
[11] |
The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.2), 2020., Available at https://www.sagemath.org.
![]() |
[12] |
T. Uehara, Rational surface automorphisms with positive entropy, Ann. Inst. Fourier (Grenoble), 66 (2016), 377-432.
doi: 10.5802/aif.3014.![]() ![]() ![]() |
A configuration of three tangent quadrics. In this case, two of the quadrics are tangent along an entire curve
The action of
The set