We construct some positive entropy automorphisms of rational surfaces with no periodic curves. The surfaces in question, which we term tri-Coble surfaces, are blow-ups of $ \mathbb P^2$ at 12 points which have contractions down to three different Coble surfaces. The automorphisms arise as compositions of lifts of Bertini involutions from certain degree $1$ weak del Pezzo surfaces.
Citation: |
[1] | H. F. Baker, Principles of Geometry. Volume 6. Introduction to the Theory of Algebraic Surfaces and Higher Loci, Cambridge Library Collection, Cambridge University Press, Cambridge, 2010. |
[2] | E. Bedford and K. Kim, Periodicities in linear fractional recurrences: Degree growth of birational surface maps, Michigan Math. J., 54 (2006), 647-670. doi: 10.1307/mmj/1163789919. |
[3] | E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Linear fractional recurrences, J. Geom. Anal., 19 (2009), 553-583. doi: 10.1007/s12220-009-9077-8. |
[4] | E. Bedford and K. Kim, Continuous families of rational surface automorphisms with positive entropy, Math. Ann., 348 (2010), 667-688. doi: 10.1007/s00208-010-0498-2. |
[5] | J. Blanc, Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces, Indiana Univ. Math. J., 62 (2013), 1143-1164. doi: 10.1512/iumj.2013.62.5040. |
[6] | A. B. Coble, The {t}en {n}odes of the {r}ational {s}extic and of the {C}ayley {s}ymmetroid, Amer. J. Math., 41 (1919), 243-265. doi: 10.2307/2370285. |
[7] | I. V. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, 2012. doi: 10.1017/CBO9781139084437. |
[8] | J. Lesieutre, Code for "{T}ri-{C}oble surfaces and their automorphisms'', ScholarSphere, Penn State University Libraries, 2021. doi: 10.26207/xwyq-hc68. |
[9] | B. Maskit, On {P}oincaré's theorem for fundamental polygons, Advances in Math., 7 (1971), 219-230. doi: 10.1016/S0001-8708(71)80003-8. |
[10] | C. T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 49–89. doi: 10.1007/s10240-007-0004-x. |
[11] | The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.2), 2020., Available at https://www.sagemath.org. |
[12] | T. Uehara, Rational surface automorphisms with positive entropy, Ann. Inst. Fourier (Grenoble), 66 (2016), 377-432. doi: 10.5802/aif.3014. |
A configuration of three tangent quadrics. In this case, two of the quadrics are tangent along an entire curve
The action of
The set