\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Tri-Coble surfaces and their automorphisms

This work was supported by NSF grant DMS-1912476 and a Sloan Research Fellowship

Abstract / Introduction Full Text(HTML) Figure(4) Related Papers Cited by
  • We construct some positive entropy automorphisms of rational surfaces with no periodic curves. The surfaces in question, which we term tri-Coble surfaces, are blow-ups of $ \mathbb P^2$ at 12 points which have contractions down to three different Coble surfaces. The automorphisms arise as compositions of lifts of Bertini involutions from certain degree $1$ weak del Pezzo surfaces.

    Mathematics Subject Classification: Primary: 14J50; Secondary: 37F10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A configuration of three tangent quadrics. In this case, two of the quadrics are tangent along an entire curve

    Figure 2.  $ \tau_ \mathbf p $ fixes $ \mathbf q $ and $ \tau_ \mathbf q $ fixes $ \mathbf p $ if and only if $ S $ is tangent to four conic curves. According to Lemma 2.6, this is possible only if $ S $ is tangent to a conic surface, which means that $ S_{ \mathbf p \mathbf q} $ is a Coble surface

    Figure 3.  The action of $ G $ on $ \Delta $

    Figure 4.  The set $ {\rm{Conv}}(\Lambda) $

  • [1] H. F. BakerPrinciples of Geometry. Volume 6. Introduction to the Theory of Algebraic Surfaces and Higher Loci, Cambridge Library Collection, Cambridge University Press, Cambridge, 2010. 
    [2] E. Bedford and K. Kim, Periodicities in linear fractional recurrences: Degree growth of birational surface maps, Michigan Math. J., 54 (2006), 647-670.  doi: 10.1307/mmj/1163789919.
    [3] E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Linear fractional recurrences, J. Geom. Anal., 19 (2009), 553-583.  doi: 10.1007/s12220-009-9077-8.
    [4] E. Bedford and K. Kim, Continuous families of rational surface automorphisms with positive entropy, Math. Ann., 348 (2010), 667-688.  doi: 10.1007/s00208-010-0498-2.
    [5] J. Blanc, Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces, Indiana Univ. Math. J., 62 (2013), 1143-1164.  doi: 10.1512/iumj.2013.62.5040.
    [6] A. B. Coble, The {t}en {n}odes of the {r}ational {s}extic and of the {C}ayley {s}ymmetroid, Amer. J. Math., 41 (1919), 243-265.  doi: 10.2307/2370285.
    [7] I. V. DolgachevClassical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, 2012.  doi: 10.1017/CBO9781139084437.
    [8] J. Lesieutre, Code for "{T}ri-{C}oble surfaces and their automorphisms'', ScholarSphere, Penn State University Libraries, 2021. doi: 10.26207/xwyq-hc68.
    [9] B. Maskit, On {P}oincaré's theorem for fundamental polygons, Advances in Math., 7 (1971), 219-230.  doi: 10.1016/S0001-8708(71)80003-8.
    [10] C. T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 49–89. doi: 10.1007/s10240-007-0004-x.
    [11] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.2), 2020., Available at https://www.sagemath.org.
    [12] T. Uehara, Rational surface automorphisms with positive entropy, Ann. Inst. Fourier (Grenoble), 66 (2016), 377-432.  doi: 10.5802/aif.3014.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(1766) PDF downloads(171) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return