
-
Previous Article
Direct products, overlapping actions, and critical regularity
- JMD Home
- This Volume
-
Next Article
A prime system with many self-joinings
Tri-Coble surfaces and their automorphisms
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA |
We construct some positive entropy automorphisms of rational surfaces with no periodic curves. The surfaces in question, which we term tri-Coble surfaces, are blow-ups of $ \mathbb P^2$ at 12 points which have contractions down to three different Coble surfaces. The automorphisms arise as compositions of lifts of Bertini involutions from certain degree $1$ weak del Pezzo surfaces.
References:
[1] |
H. F. Baker, Principles of Geometry. Volume 6. Introduction to the Theory of Algebraic Surfaces and Higher Loci, Cambridge Library Collection, Cambridge University Press, Cambridge, 2010.
![]() ![]() |
[2] |
E. Bedford and K. Kim,
Periodicities in linear fractional recurrences: Degree growth of birational surface maps, Michigan Math. J., 54 (2006), 647-670.
doi: 10.1307/mmj/1163789919. |
[3] |
E. Bedford and K. Kim,
Dynamics of rational surface automorphisms: Linear fractional recurrences, J. Geom. Anal., 19 (2009), 553-583.
doi: 10.1007/s12220-009-9077-8. |
[4] |
E. Bedford and K. Kim,
Continuous families of rational surface automorphisms with positive entropy, Math. Ann., 348 (2010), 667-688.
doi: 10.1007/s00208-010-0498-2. |
[5] |
J. Blanc,
Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces, Indiana Univ. Math. J., 62 (2013), 1143-1164.
doi: 10.1512/iumj.2013.62.5040. |
[6] |
A. B. Coble,
The {t}en {n}odes of the {r}ational {s}extic and of the {C}ayley {s}ymmetroid, Amer. J. Math., 41 (1919), 243-265.
doi: 10.2307/2370285. |
[7] |
I. V. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9781139084437.![]() ![]() ![]() |
[8] |
J. Lesieutre, Code for "{T}ri-{C}oble surfaces and their automorphisms'', ScholarSphere, Penn State University Libraries, 2021.
doi: 10.26207/xwyq-hc68. |
[9] |
B. Maskit,
On {P}oincaré's theorem for fundamental polygons, Advances in Math., 7 (1971), 219-230.
doi: 10.1016/S0001-8708(71)80003-8. |
[10] |
C. T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 49–89.
doi: 10.1007/s10240-007-0004-x. |
[11] |
The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.2), 2020., Available at https://www.sagemath.org. |
[12] |
T. Uehara,
Rational surface automorphisms with positive entropy, Ann. Inst. Fourier (Grenoble), 66 (2016), 377-432.
doi: 10.5802/aif.3014. |
show all references
References:
[1] |
H. F. Baker, Principles of Geometry. Volume 6. Introduction to the Theory of Algebraic Surfaces and Higher Loci, Cambridge Library Collection, Cambridge University Press, Cambridge, 2010.
![]() ![]() |
[2] |
E. Bedford and K. Kim,
Periodicities in linear fractional recurrences: Degree growth of birational surface maps, Michigan Math. J., 54 (2006), 647-670.
doi: 10.1307/mmj/1163789919. |
[3] |
E. Bedford and K. Kim,
Dynamics of rational surface automorphisms: Linear fractional recurrences, J. Geom. Anal., 19 (2009), 553-583.
doi: 10.1007/s12220-009-9077-8. |
[4] |
E. Bedford and K. Kim,
Continuous families of rational surface automorphisms with positive entropy, Math. Ann., 348 (2010), 667-688.
doi: 10.1007/s00208-010-0498-2. |
[5] |
J. Blanc,
Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces, Indiana Univ. Math. J., 62 (2013), 1143-1164.
doi: 10.1512/iumj.2013.62.5040. |
[6] |
A. B. Coble,
The {t}en {n}odes of the {r}ational {s}extic and of the {C}ayley {s}ymmetroid, Amer. J. Math., 41 (1919), 243-265.
doi: 10.2307/2370285. |
[7] |
I. V. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9781139084437.![]() ![]() ![]() |
[8] |
J. Lesieutre, Code for "{T}ri-{C}oble surfaces and their automorphisms'', ScholarSphere, Penn State University Libraries, 2021.
doi: 10.26207/xwyq-hc68. |
[9] |
B. Maskit,
On {P}oincaré's theorem for fundamental polygons, Advances in Math., 7 (1971), 219-230.
doi: 10.1016/S0001-8708(71)80003-8. |
[10] |
C. T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci., 105 (2007), 49–89.
doi: 10.1007/s10240-007-0004-x. |
[11] |
The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.2), 2020., Available at https://www.sagemath.org. |
[12] |
T. Uehara,
Rational surface automorphisms with positive entropy, Ann. Inst. Fourier (Grenoble), 66 (2016), 377-432.
doi: 10.5802/aif.3014. |



[1] |
B. Harbourne, P. Pokora, H. Tutaj-Gasińska. On integral Zariski decompositions of pseudoeffective divisors on algebraic surfaces. Electronic Research Announcements, 2015, 22: 103-108. doi: 10.3934/era.2015.22.103 |
[2] |
Piotr Pokora, Tomasz Szemberg. Minkowski bases on algebraic surfaces with rational polyhedral pseudo-effective cone. Electronic Research Announcements, 2014, 21: 126-131. doi: 10.3934/era.2014.21.126 |
[3] |
Alfonso Artigue. Expansive flows of surfaces. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 505-525. doi: 10.3934/dcds.2013.33.505 |
[4] |
Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209 |
[5] |
Anton Petrunin. Correction to: Metric minimizing surfaces. Electronic Research Announcements, 2018, 25: 96-96. doi: 10.3934/era.2018.25.010 |
[6] |
Anton Petrunin. Metric minimizing surfaces. Electronic Research Announcements, 1999, 5: 47-54. |
[7] |
Siran Li, Jiahong Wu, Kun Zhao. On the degenerate boussinesq equations on surfaces. Journal of Geometric Mechanics, 2020, 12 (1) : 107-140. doi: 10.3934/jgm.2020006 |
[8] |
Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291 |
[9] |
Gabriele Beltramo, Primoz Skraba, Rayna Andreeva, Rik Sarkar, Ylenia Giarratano, Miguel O. Bernabeu. Euler characteristic surfaces. Foundations of Data Science, 2021 doi: 10.3934/fods.2021027 |
[10] |
Eduard Duryev, Charles Fougeron, Selim Ghazouani. Dilation surfaces and their Veech groups. Journal of Modern Dynamics, 2019, 14: 121-151. doi: 10.3934/jmd.2019005 |
[11] |
Alexandre Girouard, Iosif Polterovich. Upper bounds for Steklov eigenvalues on surfaces. Electronic Research Announcements, 2012, 19: 77-85. doi: 10.3934/era.2012.19.77 |
[12] |
Seung Won Kim, P. Christopher Staecker. Dynamics of random selfmaps of surfaces with boundary. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 599-611. doi: 10.3934/dcds.2014.34.599 |
[13] |
Roberto Paroni, Podio-Guidugli Paolo, Brian Seguin. On the nonlocal curvatures of surfaces with or without boundary. Communications on Pure and Applied Analysis, 2018, 17 (2) : 709-727. doi: 10.3934/cpaa.2018037 |
[14] |
José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178 |
[15] |
Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27 |
[16] |
François Béguin. Smale diffeomorphisms of surfaces: a classification algorithm. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 261-310. doi: 10.3934/dcds.2004.11.261 |
[17] |
Robert S. Strichartz. Average error for spectral asymptotics on surfaces. Communications on Pure and Applied Analysis, 2016, 15 (1) : 9-39. doi: 10.3934/cpaa.2016.15.9 |
[18] |
Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801 |
[19] |
Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873 |
[20] |
Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389 |
2021 Impact Factor: 0.641
Tools
Metrics
Other articles
by authors
[Back to Top]