2021, 17: 401-434. doi: 10.3934/jmd.2021014

Shrinking targets for the geodesic flow on geometrically finite hyperbolic manifolds

1. 

Department of Mathematics, Boston College, Chestnut Hill, MA 02467, USA

2. 

Department of Mathematics, Yale University, New Haven, CT 06511, USA

Received  January 25, 2020 Revised  March 15, 2021 Published  October 2021

Fund Project: DK: Partially supported by NSF CAREER grant DMS-1651563.
HO: Partially supported by NSF grants.

Let $ \mathscr{M} $ be a geometrically finite hyperbolic manifold. We present a very general theorem on the shrinking target problem for the geodesic flow, using its exponential mixing. This includes a strengthening of Sullivan's logarithm law for the excursion rate of the geodesic flow. More generally, we prove logarithm laws for the first hitting time for shrinking cusp neighborhoods, shrinking tubular neighborhoods of a closed geodesic, and shrinking metric balls, as well as give quantitative estimates for the time a generic geodesic spends in such shrinking targets.

Citation: Dubi Kelmer, Hee Oh. Shrinking targets for the geodesic flow on geometrically finite hyperbolic manifolds. Journal of Modern Dynamics, 2021, 17: 401-434. doi: 10.3934/jmd.2021014
References:
[1]

B. H. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal., 113 (1993), 245-317.  doi: 10.1006/jfan.1993.1052.  Google Scholar

[2]

F. Dal'boJ.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis, Israel. J. Math., 118 (2000), 109-124.  doi: 10.1007/BF02803518.  Google Scholar

[3]

K. Corlette and A. Iozzi, Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Amer. Math. Soc., 351 (1999), 1507-1530.  doi: 10.1090/S0002-9947-99-02113-3.  Google Scholar

[4]

M. M. DodsonM. V. MeliánD. Pestana and S. L. Velani, Patterson measure and ubiquity, Ann. Acad. Sci. Fenn. Ser. A. I Math., 20 (1995), 37-60.   Google Scholar

[5]

S. Edwards and H. Oh, Spectral gap and exponential mixing on geometrically finite hyperbolic manifolds, preprint, arXiv: 2001.03377. To appear in Duke Math. J.. Google Scholar

[6]

S. Galatolo, Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14 (2007), 797-805.  doi: 10.4310/MRL.2007.v14.n5.a8.  Google Scholar

[7]

S. Galatolo, Hitting time in regular sets and logarithm law for rapidly mixing dynamical systems, Proc. Amer. Math. Soc., 138 (2010), 2477–-2487. doi: 10.1090/S0002-9939-10-10275-5.  Google Scholar

[8]

S. Galatolo and I. Nisoli, Shrinking targets in fast mixing flows and the geodesic flow on negatively curved manifolds, Nonlinearity, 24 (2011), 3099-3113.  doi: 10.1088/0951-7715/24/11/005.  Google Scholar

[9]

A. Ghosh and D. Kelmer, Shrinking targets for semisimple groups, Bull. Lond. Math. Soc., 49 (2017), 235-245.  doi: 10.1112/blms.12023.  Google Scholar

[10]

S. Hersonsky and F. Paulin, On the almost sure spiraling of geodesics in negatively curved manifolds, J. Differential Geom., 85 (2010), 271-314.   Google Scholar

[11]

C. T. McMullen, Hausdorff dimension and conformal dynamics. III. Computation of dimension, Amer. J. Math., 120 (1998), 691-721.  doi: 10.1353/ajm.1998.0031.  Google Scholar

[12]

G. MargulisA. Mohammadi and H. Oh, Closed geodesics and holonomies for Kleinian manifolds, Geom. Funct. Anal., 24 (2014), 1608-1636.  doi: 10.1007/s00039-014-0299-y.  Google Scholar

[13]

D. Kelmer, Shrinking targets for discrete time flows on hyperbolic manifolds, Geom. Funct. Anal., 27 (2017), 1257-1287.  doi: 10.1007/s00039-017-0421-z.  Google Scholar

[14]

D. Kelmer and S. Yu, Shrinking target problems for flows on homogeneous spaces., Trans. Amer. Math. Soc., 372 (2019), 6283-6314.  doi: 10.1090/tran/7783.  Google Scholar

[15]

D. Kleinbock, I. Konstantoulas and F. K. Richter, Zero-one laws for eventually always hitting points in mixing systems, preprint, arXiv: 1904.08584. Google Scholar

[16]

D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.  doi: 10.1007/s002220050350.  Google Scholar

[17]

D. Kleinbock and X. Zhao, An application of lattice points counting to shrinking target problems, Discrete Contin. Dyn. Syst., 38 (2018), 155-168.  doi: 10.3934/dcds.2018007.  Google Scholar

[18]

A. Kontorovich and H. Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. Amer. Math. Soc., 24 (2011), 603-648.  doi: 10.1090/S0894-0347-2011-00691-7.  Google Scholar

[19]

P. D. Lax and R. S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Functional Analysis, 46 (1982), 280-350.  doi: 10.1016/0022-1236(82)90050-7.  Google Scholar

[20]

J. Li and W. Pan, Exponential mixing of geodesic flows for geometrically finite hyperbolic manifolds with cusps, preprint, arXiv: 2009.12886. Google Scholar

[21]

F. Maucourant, Dynamical Borel-Cantelli lemma for hyperbolic spaces, Israel. J. Math., 152 (2006), 143-155.  doi: 10.1007/BF02771980.  Google Scholar

[22]

A. Mohammadi and H. Oh, Matrix coefficients, counting and primes for orbits of geometrically finite groups, J. Eur. Math. Soc. (JEMS), 17 (2015), 837-897.  doi: 10.4171/JEMS/520.  Google Scholar

[23]

T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.), no. 95 (2005). doi: 10.24033/msmf.408.  Google Scholar

[24]

P. Sarkar and D. Winter, Exponential mixing of frame flows for convex cocompact hyperbolic manifolds, preprint, arXiv: 2004.14551. Google Scholar

[25]

L. Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity, 24 (2011), 1089-1120.  doi: 10.1088/0951-7715/24/4/005.  Google Scholar

[26]

D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171–202.  Google Scholar

[27]

D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarthm law for geodesics, Acta Math., 149 (1982), 251-237.  doi: 10.1007/BF02392354.  Google Scholar

[28]

B. Stratmann and S. L. Velani, The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. (3), 71 (1995), 197-220.  doi: 10.1112/plms/s3-71.1.197.  Google Scholar

show all references

References:
[1]

B. H. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal., 113 (1993), 245-317.  doi: 10.1006/jfan.1993.1052.  Google Scholar

[2]

F. Dal'boJ.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis, Israel. J. Math., 118 (2000), 109-124.  doi: 10.1007/BF02803518.  Google Scholar

[3]

K. Corlette and A. Iozzi, Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Amer. Math. Soc., 351 (1999), 1507-1530.  doi: 10.1090/S0002-9947-99-02113-3.  Google Scholar

[4]

M. M. DodsonM. V. MeliánD. Pestana and S. L. Velani, Patterson measure and ubiquity, Ann. Acad. Sci. Fenn. Ser. A. I Math., 20 (1995), 37-60.   Google Scholar

[5]

S. Edwards and H. Oh, Spectral gap and exponential mixing on geometrically finite hyperbolic manifolds, preprint, arXiv: 2001.03377. To appear in Duke Math. J.. Google Scholar

[6]

S. Galatolo, Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14 (2007), 797-805.  doi: 10.4310/MRL.2007.v14.n5.a8.  Google Scholar

[7]

S. Galatolo, Hitting time in regular sets and logarithm law for rapidly mixing dynamical systems, Proc. Amer. Math. Soc., 138 (2010), 2477–-2487. doi: 10.1090/S0002-9939-10-10275-5.  Google Scholar

[8]

S. Galatolo and I. Nisoli, Shrinking targets in fast mixing flows and the geodesic flow on negatively curved manifolds, Nonlinearity, 24 (2011), 3099-3113.  doi: 10.1088/0951-7715/24/11/005.  Google Scholar

[9]

A. Ghosh and D. Kelmer, Shrinking targets for semisimple groups, Bull. Lond. Math. Soc., 49 (2017), 235-245.  doi: 10.1112/blms.12023.  Google Scholar

[10]

S. Hersonsky and F. Paulin, On the almost sure spiraling of geodesics in negatively curved manifolds, J. Differential Geom., 85 (2010), 271-314.   Google Scholar

[11]

C. T. McMullen, Hausdorff dimension and conformal dynamics. III. Computation of dimension, Amer. J. Math., 120 (1998), 691-721.  doi: 10.1353/ajm.1998.0031.  Google Scholar

[12]

G. MargulisA. Mohammadi and H. Oh, Closed geodesics and holonomies for Kleinian manifolds, Geom. Funct. Anal., 24 (2014), 1608-1636.  doi: 10.1007/s00039-014-0299-y.  Google Scholar

[13]

D. Kelmer, Shrinking targets for discrete time flows on hyperbolic manifolds, Geom. Funct. Anal., 27 (2017), 1257-1287.  doi: 10.1007/s00039-017-0421-z.  Google Scholar

[14]

D. Kelmer and S. Yu, Shrinking target problems for flows on homogeneous spaces., Trans. Amer. Math. Soc., 372 (2019), 6283-6314.  doi: 10.1090/tran/7783.  Google Scholar

[15]

D. Kleinbock, I. Konstantoulas and F. K. Richter, Zero-one laws for eventually always hitting points in mixing systems, preprint, arXiv: 1904.08584. Google Scholar

[16]

D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.  doi: 10.1007/s002220050350.  Google Scholar

[17]

D. Kleinbock and X. Zhao, An application of lattice points counting to shrinking target problems, Discrete Contin. Dyn. Syst., 38 (2018), 155-168.  doi: 10.3934/dcds.2018007.  Google Scholar

[18]

A. Kontorovich and H. Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. Amer. Math. Soc., 24 (2011), 603-648.  doi: 10.1090/S0894-0347-2011-00691-7.  Google Scholar

[19]

P. D. Lax and R. S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Functional Analysis, 46 (1982), 280-350.  doi: 10.1016/0022-1236(82)90050-7.  Google Scholar

[20]

J. Li and W. Pan, Exponential mixing of geodesic flows for geometrically finite hyperbolic manifolds with cusps, preprint, arXiv: 2009.12886. Google Scholar

[21]

F. Maucourant, Dynamical Borel-Cantelli lemma for hyperbolic spaces, Israel. J. Math., 152 (2006), 143-155.  doi: 10.1007/BF02771980.  Google Scholar

[22]

A. Mohammadi and H. Oh, Matrix coefficients, counting and primes for orbits of geometrically finite groups, J. Eur. Math. Soc. (JEMS), 17 (2015), 837-897.  doi: 10.4171/JEMS/520.  Google Scholar

[23]

T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.), no. 95 (2005). doi: 10.24033/msmf.408.  Google Scholar

[24]

P. Sarkar and D. Winter, Exponential mixing of frame flows for convex cocompact hyperbolic manifolds, preprint, arXiv: 2004.14551. Google Scholar

[25]

L. Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity, 24 (2011), 1089-1120.  doi: 10.1088/0951-7715/24/4/005.  Google Scholar

[26]

D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171–202.  Google Scholar

[27]

D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarthm law for geodesics, Acta Math., 149 (1982), 251-237.  doi: 10.1007/BF02392354.  Google Scholar

[28]

B. Stratmann and S. L. Velani, The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. (3), 71 (1995), 197-220.  doi: 10.1112/plms/s3-71.1.197.  Google Scholar

[1]

Brent Everitt, John Ratcliffe and Steven Tschantz. The smallest hyperbolic 6-manifolds. Electronic Research Announcements, 2005, 11: 40-46.

[2]

Carlos Arnoldo Morales. Strong stable manifolds for sectional-hyperbolic sets. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 553-560. doi: 10.3934/dcds.2007.17.553

[3]

Shucheng Yu. Logarithm laws for unipotent flows on hyperbolic manifolds. Journal of Modern Dynamics, 2017, 11: 447-476. doi: 10.3934/jmd.2017018

[4]

Andy Hammerlindl, Rafael Potrie, Mario Shannon. Seifert manifolds admitting partially hyperbolic diffeomorphisms. Journal of Modern Dynamics, 2018, 12: 193-222. doi: 10.3934/jmd.2018008

[5]

Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451

[6]

Walter D. Neumann and Jun Yang. Invariants from triangulations of hyperbolic 3-manifolds. Electronic Research Announcements, 1995, 1: 72-79.

[7]

Vladimir V. Chepyzhov, Anna Kostianko, Sergey Zelik. Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1115-1142. doi: 10.3934/dcdsb.2019009

[8]

Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133

[9]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Tori with hyperbolic dynamics in 3-manifolds. Journal of Modern Dynamics, 2011, 5 (1) : 185-202. doi: 10.3934/jmd.2011.5.185

[10]

Anja Randecker, Giulio Tiozzo. Cusp excursion in hyperbolic manifolds and singularity of harmonic measure. Journal of Modern Dynamics, 2021, 17: 183-211. doi: 10.3934/jmd.2021006

[11]

Jörg Schmeling. A notion of independence via moving targets. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 269-280. doi: 10.3934/dcds.2006.15.269

[12]

Dmitri Burago, Sergei Ivanov. Partially hyperbolic diffeomorphisms of 3-manifolds with Abelian fundamental groups. Journal of Modern Dynamics, 2008, 2 (4) : 541-580. doi: 10.3934/jmd.2008.2.541

[13]

Maciej J. Capiński, Piotr Zgliczyński. Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 641-670. doi: 10.3934/dcds.2011.30.641

[14]

Snir Ben Ovadia. Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. Journal of Modern Dynamics, 2018, 13: 43-113. doi: 10.3934/jmd.2018013

[15]

Mohammadreza Molaei. Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds. Electronic Research Announcements, 2018, 25: 8-15. doi: 10.3934/era.2018.25.002

[16]

Luis Barreira, Claudia Valls. Existence of stable manifolds for nonuniformly hyperbolic $c^1$ dynamics. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 307-327. doi: 10.3934/dcds.2006.16.307

[17]

Thierry Daudé, Damien Gobin, François Nicoleau. Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Problems & Imaging, 2016, 10 (3) : 659-688. doi: 10.3934/ipi.2016016

[18]

Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089

[19]

Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111

[20]

Sara D. Cardell, Amparo Fúster-Sabater. Modelling the shrinking generator in terms of linear CA. Advances in Mathematics of Communications, 2016, 10 (4) : 797-809. doi: 10.3934/amc.2016041

2020 Impact Factor: 0.848

Article outline

[Back to Top]