-
Previous Article
Dynamics of transcendental Hénon maps III: Infinite entropy
- JMD Home
- This Volume
-
Next Article
Shrinking targets for the geodesic flow on geometrically finite hyperbolic manifolds
A generic distal tower of arbitrary countable height over an arbitrary infinite ergodic system
1. | Department of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel |
2. | Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel |
We show the existence, over an arbitrary infinite ergodic $ \mathbb{Z} $-dynamical system, of a generic ergodic relatively distal extension of arbitrary countable rank and arbitrary infinite compact extending groups (or more generally, infinite quotients of compact groups) in its canonical distal tower.
References:
[1] |
J. Aaronson and B. Weiss,
On Herman's theorem for ergodic, amenable group extensions of endomorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 1283-1293.
doi: 10.1017/S0143385703000713. |
[2] |
F. Beleznay and M. Foreman,
The complexity of the collection of measure-distal transformations, Ergodic Theory Dynam. Systems, 16 (1996), 929-962.
doi: 10.1017/S0143385700010129. |
[3] |
H. Furstenberg,
The structure of distal flows, Amer. J. Math., 85 (1963), 477-515.
doi: 10.2307/2373137. |
[4] |
H. Furstenberg,
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., 31 (1977), 204-256.
doi: 10.1007/BF02813304. |
[5] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.
![]() ![]() |
[6] |
E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/surv/101. |
[7] |
R. Jones and W. Parry,
Compact abelian group extensions of dynamical systems II, Compositio Mathematica, 25 (1972), 135-147.
|
[8] |
A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995. |
[9] |
W. Parry, Zero entropy of distal and related transformations, Topological Dynamics, (1968), 383–389. |
[10] |
E. Szemerédi,
On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith., 27 (1975), 199-245.
doi: 10.4064/aa-27-1-199-245. |
[11] |
B. Weiss,
Strictly ergodic models for dynamical systems, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 143-146.
doi: 10.1090/S0273-0979-1985-15399-6. |
[12] |
R. J. Zimmer,
Extensions of ergodic group actions, Illinois J. Math., 20 (1976), 373-409.
doi: 10.1215/ijm/1256049780. |
[13] |
R. J. Zimmer,
Ergodic actions with generalized discrete spectrum, Illinois J. Math., 20 (1976), 555-588.
doi: 10.1215/ijm/1256049648. |
show all references
References:
[1] |
J. Aaronson and B. Weiss,
On Herman's theorem for ergodic, amenable group extensions of endomorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 1283-1293.
doi: 10.1017/S0143385703000713. |
[2] |
F. Beleznay and M. Foreman,
The complexity of the collection of measure-distal transformations, Ergodic Theory Dynam. Systems, 16 (1996), 929-962.
doi: 10.1017/S0143385700010129. |
[3] |
H. Furstenberg,
The structure of distal flows, Amer. J. Math., 85 (1963), 477-515.
doi: 10.2307/2373137. |
[4] |
H. Furstenberg,
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., 31 (1977), 204-256.
doi: 10.1007/BF02813304. |
[5] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.
![]() ![]() |
[6] |
E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/surv/101. |
[7] |
R. Jones and W. Parry,
Compact abelian group extensions of dynamical systems II, Compositio Mathematica, 25 (1972), 135-147.
|
[8] |
A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995. |
[9] |
W. Parry, Zero entropy of distal and related transformations, Topological Dynamics, (1968), 383–389. |
[10] |
E. Szemerédi,
On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith., 27 (1975), 199-245.
doi: 10.4064/aa-27-1-199-245. |
[11] |
B. Weiss,
Strictly ergodic models for dynamical systems, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 143-146.
doi: 10.1090/S0273-0979-1985-15399-6. |
[12] |
R. J. Zimmer,
Extensions of ergodic group actions, Illinois J. Math., 20 (1976), 373-409.
doi: 10.1215/ijm/1256049780. |
[13] |
R. J. Zimmer,
Ergodic actions with generalized discrete spectrum, Illinois J. Math., 20 (1976), 555-588.
doi: 10.1215/ijm/1256049648. |
[1] |
Gernot Greschonig. Real cocycles of point-distal minimal flows. Conference Publications, 2015, 2015 (special) : 540-548. doi: 10.3934/proc.2015.0540 |
[2] |
Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025 |
[3] |
Boris Kalinin, Victoria Sadovskaya. Linear cocycles over hyperbolic systems and criteria of conformality. Journal of Modern Dynamics, 2010, 4 (3) : 419-441. doi: 10.3934/jmd.2010.4.419 |
[4] |
Victoria Sadovskaya. Fiber bunching and cohomology for Banach cocycles over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4959-4972. doi: 10.3934/dcds.2017213 |
[5] |
Victoria Sadovskaya. Cohomology of $GL(2,\mathbb{R})$-valued cocycles over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2085-2104. doi: 10.3934/dcds.2013.33.2085 |
[6] |
Mahesh G. Nerurkar, Héctor J. Sussmann. Construction of ergodic cocycles that are fundamental solutions to linear systems of a special form. Journal of Modern Dynamics, 2007, 1 (2) : 205-253. doi: 10.3934/jmd.2007.1.205 |
[7] |
Boris Kalinin, Victoria Sadovskaya. Lyapunov exponents of cocycles over non-uniformly hyperbolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5105-5118. doi: 10.3934/dcds.2018224 |
[8] |
Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017 |
[9] |
Yao Xu, Weisheng Niu. Periodic homogenization of elliptic systems with stratified structure. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2295-2323. doi: 10.3934/dcds.2019097 |
[10] |
Matthew Foreman, Benjamin Weiss. From odometers to circular systems: A global structure theorem. Journal of Modern Dynamics, 2019, 15: 345-423. doi: 10.3934/jmd.2019024 |
[11] |
Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011 |
[12] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1857-1870. doi: 10.3934/dcdss.2020461 |
[13] |
Kai Cao, Xiongping Dai. Lifting the regionally proximal relation and characterizations of distal extensions. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2103-2174. doi: 10.3934/dcds.2021186 |
[14] |
Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure and Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75 |
[15] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[16] |
Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121 |
[17] |
Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325 |
[18] |
Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1 |
[19] |
Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684 |
[20] |
D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]