2021, 17: 435-463. doi: 10.3934/jmd.2021015

A generic distal tower of arbitrary countable height over an arbitrary infinite ergodic system

1. 

Department of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel

2. 

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received  June 25, 2020 Revised  July 08, 2021 Published  November 2021

We show the existence, over an arbitrary infinite ergodic $ \mathbb{Z} $-dynamical system, of a generic ergodic relatively distal extension of arbitrary countable rank and arbitrary infinite compact extending groups (or more generally, infinite quotients of compact groups) in its canonical distal tower.

Citation: Eli Glasner, Benjamin Weiss. A generic distal tower of arbitrary countable height over an arbitrary infinite ergodic system. Journal of Modern Dynamics, 2021, 17: 435-463. doi: 10.3934/jmd.2021015
References:
[1]

J. Aaronson and B. Weiss, On Herman's theorem for ergodic, amenable group extensions of endomorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 1283-1293.  doi: 10.1017/S0143385703000713.  Google Scholar

[2]

F. Beleznay and M. Foreman, The complexity of the collection of measure-distal transformations, Ergodic Theory Dynam. Systems, 16 (1996), 929-962.  doi: 10.1017/S0143385700010129.  Google Scholar

[3]

H. Furstenberg, The structure of distal flows, Amer. J. Math., 85 (1963), 477-515.  doi: 10.2307/2373137.  Google Scholar

[4]

H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., 31 (1977), 204-256.  doi: 10.1007/BF02813304.  Google Scholar

[5] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.   Google Scholar
[6]

E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/surv/101.  Google Scholar

[7]

R. Jones and W. Parry, Compact abelian group extensions of dynamical systems II, Compositio Mathematica, 25 (1972), 135-147.   Google Scholar

[8]

A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.  Google Scholar

[9]

W. Parry, Zero entropy of distal and related transformations, Topological Dynamics, (1968), 383–389.  Google Scholar

[10]

E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith., 27 (1975), 199-245.  doi: 10.4064/aa-27-1-199-245.  Google Scholar

[11]

B. Weiss, Strictly ergodic models for dynamical systems, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 143-146.  doi: 10.1090/S0273-0979-1985-15399-6.  Google Scholar

[12]

R. J. Zimmer, Extensions of ergodic group actions, Illinois J. Math., 20 (1976), 373-409.  doi: 10.1215/ijm/1256049780.  Google Scholar

[13]

R. J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math., 20 (1976), 555-588.  doi: 10.1215/ijm/1256049648.  Google Scholar

show all references

References:
[1]

J. Aaronson and B. Weiss, On Herman's theorem for ergodic, amenable group extensions of endomorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 1283-1293.  doi: 10.1017/S0143385703000713.  Google Scholar

[2]

F. Beleznay and M. Foreman, The complexity of the collection of measure-distal transformations, Ergodic Theory Dynam. Systems, 16 (1996), 929-962.  doi: 10.1017/S0143385700010129.  Google Scholar

[3]

H. Furstenberg, The structure of distal flows, Amer. J. Math., 85 (1963), 477-515.  doi: 10.2307/2373137.  Google Scholar

[4]

H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., 31 (1977), 204-256.  doi: 10.1007/BF02813304.  Google Scholar

[5] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.   Google Scholar
[6]

E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/surv/101.  Google Scholar

[7]

R. Jones and W. Parry, Compact abelian group extensions of dynamical systems II, Compositio Mathematica, 25 (1972), 135-147.   Google Scholar

[8]

A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.  Google Scholar

[9]

W. Parry, Zero entropy of distal and related transformations, Topological Dynamics, (1968), 383–389.  Google Scholar

[10]

E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith., 27 (1975), 199-245.  doi: 10.4064/aa-27-1-199-245.  Google Scholar

[11]

B. Weiss, Strictly ergodic models for dynamical systems, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 143-146.  doi: 10.1090/S0273-0979-1985-15399-6.  Google Scholar

[12]

R. J. Zimmer, Extensions of ergodic group actions, Illinois J. Math., 20 (1976), 373-409.  doi: 10.1215/ijm/1256049780.  Google Scholar

[13]

R. J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math., 20 (1976), 555-588.  doi: 10.1215/ijm/1256049648.  Google Scholar

[1]

Gernot Greschonig. Real cocycles of point-distal minimal flows. Conference Publications, 2015, 2015 (special) : 540-548. doi: 10.3934/proc.2015.0540

[2]

Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025

[3]

Boris Kalinin, Victoria Sadovskaya. Linear cocycles over hyperbolic systems and criteria of conformality. Journal of Modern Dynamics, 2010, 4 (3) : 419-441. doi: 10.3934/jmd.2010.4.419

[4]

Victoria Sadovskaya. Fiber bunching and cohomology for Banach cocycles over hyperbolic systems. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4959-4972. doi: 10.3934/dcds.2017213

[5]

Victoria Sadovskaya. Cohomology of $GL(2,\mathbb{R})$-valued cocycles over hyperbolic systems. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 2085-2104. doi: 10.3934/dcds.2013.33.2085

[6]

Mahesh G. Nerurkar, Héctor J. Sussmann. Construction of ergodic cocycles that are fundamental solutions to linear systems of a special form. Journal of Modern Dynamics, 2007, 1 (2) : 205-253. doi: 10.3934/jmd.2007.1.205

[7]

Boris Kalinin, Victoria Sadovskaya. Lyapunov exponents of cocycles over non-uniformly hyperbolic systems. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5105-5118. doi: 10.3934/dcds.2018224

[8]

Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017

[9]

Yao Xu, Weisheng Niu. Periodic homogenization of elliptic systems with stratified structure. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2295-2323. doi: 10.3934/dcds.2019097

[10]

Matthew Foreman, Benjamin Weiss. From odometers to circular systems: A global structure theorem. Journal of Modern Dynamics, 2019, 15: 345-423. doi: 10.3934/jmd.2019024

[11]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1857-1870. doi: 10.3934/dcdss.2020461

[13]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[15]

Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121

[16]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[17]

Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1

[18]

Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684

[19]

D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898

[20]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

2020 Impact Factor: 0.848

Article outline

[Back to Top]