\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New time-changes of unipotent flows on quotients of Lorentz groups

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • We study the cocompact lattices $ \Gamma\subset SO(n, 1) $ so that the Laplace–Beltrami operator $ \Delta $ on $ SO(n)\backslash SO(n, 1)/\Gamma $ has eigenvalues in $ (0, \frac{1}{4}) $, and then show that there exist time-changes of unipotent flows on $ SO(n, 1)/\Gamma $ that are not measurably conjugate to the unperturbed ones. A main ingredient of the proof is a stronger version of the branching of the complementary series. Combining it with a refinement of the works of Ratner and Flaminio–Forni is adequate for our purpose.

    Mathematics Subject Classification: Primary: 37A17; Secondary: 37A20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A collection of $ \epsilon $-blocks $ \{{\rm{BL}}_{1}, \ldots, {\rm{BL}}_{n}\} $. The solid straight lines are the unipotent orbits in the $ \epsilon $-blocks and the dashed lines are the rest of the unipotent orbits. The bent curves indicate the length defined by the letters

  • [1] A. Avila, G. Forni, D. Ravotti and C. Ulcigrai, Mixing for smooth time-changes of general nilflows, Adv. Math., 385 (2021), 107759, 65 pp. doi: 10.1016/j.aim.2021.107759.
    [2] T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Fundamental Principles of Mathematical Sciences, 252, Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4612-5734-9.
    [3] R. Brooks, Injectivity radius and low eigenvalues of hyperbolic manifolds, J. Reine Angew. Math., 390 (1988), 117-129.  doi: 10.1515/crll.1988.390.117.
    [4] K. Corlette, Hausdorff dimensions of limit sets. Ⅰ, Invent. Math., 102 (1990), 521-541.  doi: 10.1007/BF01233439.
    [5] R. T. De Aldecoa, Spectral analysis of time changes of horocycle flows, J. Mod. Dyn., 6 (2012), 275-285.  doi: 10.3934/jmd.2012.6.275.
    [6] M. Einsiedler, Ratner's theorem on ${\rm{SL}} (2, {\bf{R}})$-invariant measures, Jahresber. Deutsch. Math.-Verein., 108 (2006), 143-164. 
    [7] M. EinsiedlerG. Margulis and A. Venkatesh, Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces, Invent. Math., 177 (2009), 137-212.  doi: 10.1007/s00222-009-0177-7.
    [8] L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.  doi: 10.1215/S0012-7094-03-11932-8.
    [9] G. Forni and C. Ulcigrai, Time-changes of horocycle flows, J. Mod. Dyn., 6 (2012), 251-273.  doi: 10.3934/jmd.2012.6.251.
    [10] I. M. Gel'fand and M. L. Cetlin, Finite-dimensional representations of groups of orthogonal matrices, Doklady Akad. Nauk SSSR (NS), 71 (1950), 1017-1020. 
    [11] N. J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. doi: 10.1137/1.9780898717778.
    [12] T. Hirai, On infinitesimal operators of irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad., 38 (1962), 83-87. 
    [13] T. Hirai, On irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad., 38 (1962), 258-262. 
    [14] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin, 1978.
    [15] K. D. Johnson and N. R. Wallach, Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc., 229 (1977), 137-173.  doi: 10.1090/S0002-9947-1977-0447483-0.
    [16] D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.  doi: 10.1007/s002220050350.
    [17] A. W. KnappRepresentation Theory of Semisimple Groups: An Overview Based on Examples, Princeton Landmarks in Mathematics, Princeton University Press, NJ, 2001. 
    [18] B. Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc., 75 (1969), 627-642.  doi: 10.1090/S0002-9904-1969-12235-4.
    [19] P. D. Lax and R. S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Functional Analysis, 46 (1982), 280-350.  doi: 10.1016/0022-1236(82)90050-7.
    [20] P. D. Lax and R. S. Phillips, Translation representations for automorphic solutions of the wave equation in non-Euclidean spaces. Ⅰ, Comm. Pure Appl. Math., 37 (1984), 303-328.  doi: 10.1002/cpa.3160370304.
    [21] B. Marcus, Ergodic properties of horocycle flows for surfaces of negative curvature, Ann. of Math. (2), 105 (1977), 81-105.  doi: 10.2307/1971026.
    [22] D. J. Mieczkowski, The Cohomological Equation and Representation Theory, Ph.D thesis, The Pennsylvalia State University, 2006.
    [23] J. J. Millson, On the first Betti number of a constant negatively curved manifold, Ann. of Math. (2), 104 (1976), 235-247.  doi: 10.2307/1971046.
    [24] D. W. MorrisRatner's Theorems on Unipotent Flows, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2005. 
    [25] N. Mukunda, Unitary representations of the Lorentz groups: Reduction of the supplementary series under a noncompact subgroup, J. Math. Phys., 9 (1968), 417-431.  doi: 10.1063/1.1664595.
    [26] F. A. Ramírez, Invariant distributions and cohomology for geodesic flows and higher cohomology of higher-rank Anosov actions, J. Funct. Anal., 265 (2013), 1002-1063.  doi: 10.1016/j.jfa.2013.05.010.
    [27] B. Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Amer. Math. Soc., 80 (1974), 996-1000.  doi: 10.1090/S0002-9904-1974-13609-8.
    [28] M. Ratner, The Cartesian square of the horocycle flow is not loosely Bernoulli, Israel J. Math., 34 (1979), 72-96.  doi: 10.1007/BF02761825.
    [29] M. Ratner, Rigidity of time changes for horocycle flows, Acta Math., 156 (1986), 1-32.  doi: 10.1007/BF02399199.
    [30] D. Ravotti, Parabolic perturbations of unipotent flows on compact quotients of ${\rm{SL}} (3, {\bf{R}})$, Comm. Math. Phys., 371 (2019), 331-351.  doi: 10.1007/s00220-019-03348-0.
    [31] P. Sarnak, Notes on the generalized Ramanujan conjectures, Clay Math. Proc., 4 (2005), 659-685. 
    [32] Y. Shalom, Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2), 152 (2000), 113-182.  doi: 10.2307/2661380.
    [33] L. D. Simonelli, Absolutely continuous spectrum for parabolic flows/maps, Discrete Contin. Dyn. Syst., 38 (2018), 263-292.  doi: 10.3934/dcds.2018013.
    [34] B. Speh and T. N. Venkataramana, On the Restriction of Representations of ${SL} (2, {\bf{C}})$ to ${SL} (2, {\bf{R}})$, Representation Theory, Complex Analysis, and Integral Geometry, Birkhäuser/Springer, New York, 2012,231–249. doi: 10.1007/978-0-8176-4817-6_9.
    [35] R. SchoenS. Wolpert and and S.-T. Yau, Geometric bounds on the low eigenvalues of a compact surface, Proc. Sympos. Pure Math., 36 (1980), 279-285. 
    [36] B. Speh and G. Zhang, Restriction to symmetric subgroups of unitary representations of rank one semisimple Lie groups, Math. Z., 283 (2016), 629-647.  doi: 10.1007/s00209-016-1614-0.
    [37] E. Thieleker, On the quasi-simple irreducible representations of the Lorentz groups, Trans. Amer. Math. Soc., 179 (1973), 465-505.  doi: 10.1090/S0002-9947-1973-0325856-0.
    [38] E. Thieleker, The unitary representations of the generalized Lorentz groups, Trans. Amer. Math. Soc., 199 (1974), 327-367.  doi: 10.1090/S0002-9947-1974-0379754-8.
    [39] A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2), 172 (2010), 989-1094.  doi: 10.4007/annals.2010.172.989.
    [40] N. Y. Vilenkin, Special Functions and the Theory of Group Representations, 2$^nd$ edition, "Nauka", Moscow, 1991.
    [41] Z. J. Wang, Cohomological equation and cocycle rigidity of parabolic actions in some higher-rank Lie groups, Geom. Funct. Anal., 25 (2015), 1956-2020.  doi: 10.1007/s00039-015-0351-6.
    [42] G. Zhang, Discrete components in restriction of unitary representations of rank one semisimple Lie groups, J. Funct. Anal., 269 (2015), 3689-3713.  doi: 10.1016/j.jfa.2015.09.021.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(1702) PDF downloads(246) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return