We consider the derivative $ D\pi $ of the projection $ \pi $ from a stratum of Abelian or quadratic differentials to Teichmüller space. A closed one-form $ \eta $ determines a relative cohomology class $ [\eta]_\Sigma $, which is a tangent vector to the stratum. We give an integral formula for the pairing of $ D\pi([\eta]_\Sigma) $ with a cotangent vector to Teichmüller space (a quadratic differential). We derive from this a comparison between Hodge and Teichmüller norms, which has been used in the work of Arana-Herrera on effective dynamics of mapping class groups, and which may clarify the relationship between dynamical and geometric hyperbolicity results in Teichmüller theory.
Citation: |
[1] |
F. Arana-Herrera, Effective mapping class group dynamics I: Counting lattice points in Teichmüller space, preprint, arXiv: 2010.03123, 2020.
![]() |
[2] |
F. Arana-Herrera, Effective mapping class group dynamics II: Geometric intersection numbers, preprint, arXiv: 2104.01694, 2021.
![]() |
[3] |
F. Arana-Herrera, Effective Mapping Class Group Dynamics III: Counting Filling Closed Curves on Surfaces, preprint, arXiv: 2106.11386, 2021.
![]() |
[4] |
J. Athreya, A. Bufetov, A. Eskin and M. Mirzakhani, Lattice point asymptotics and volume growth on Teichmüller space, Duke Math. J., 161 (2012), 1055-1111.
doi: 10.1215/00127094-1548443.![]() ![]() ![]() |
[5] |
M. Bertola, D. Korotkin and C. Norton, Symplectic geometry of the moduli space of projective structures in homological coordinates, Invent. Math., 210 (2017), 759-814.
doi: 10.1007/s00222-017-0739-z.![]() ![]() ![]() |
[6] |
K. Burns, H. Masur and A. Wilkinson, The Weil-Petersson geodesic flow is ergodic, Ann. of Math., 175 (2012), 835-908.
doi: 10.4007/annals.2012.175.2.8.![]() ![]() ![]() |
[7] |
L. Carleson, P. W. Jones and J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. (N.S.), 25 (1994), 1-30.
doi: 10.1007/BF01232933.![]() ![]() ![]() |
[8] |
A. Douady and J. Hubbard, On the density of Strebel differentials, Invent. Math., 30 (1975), 175-179.
doi: 10.1007/BF01425507.![]() ![]() ![]() |
[9] |
A. Eskin, C. T. McMullen, R. E. Mukamel and A. Wright, Billiards, quadrilaterals, and moduli spaces, J. Amer. Math. Soc., 33 (2020), 1039-1086.
doi: 10.1090/jams/950.![]() ![]() ![]() |
[10] |
A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL$(2, \Bbb R)$ action on moduli space, Publ. Math. Inst. Hautes Études Sci., 127 (2018), 95–324.
doi: 10.1007/s10240-018-0099-2.![]() ![]() ![]() |
[11] |
A. Eskin, M. Mirzakhani and A. Mohammadi, Isolation, equidistribution, and orbit closures for the SL$(2, \Bbb R)$ action on moduli space, Ann. of Math., 182 (2015), 673-721.
doi: 10.4007/annals.2015.182.2.7.![]() ![]() ![]() |
[12] |
A. Eskin, M. Mirzakhani and K. Rafi, Counting closed geodesics in strata, Invent. Math., 215 (2019), 535-607.
doi: 10.1007/s00222-018-0832-y.![]() ![]() ![]() |
[13] |
S. Filip, Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, Invent. Math., 205 (2016), 617-670.
doi: 10.1007/s00222-015-0643-3.![]() ![]() ![]() |
[14] |
S. Filip, Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math., 183 (2016), 681-713.
doi: 10.4007/annals.2016.183.2.5.![]() ![]() ![]() |
[15] |
G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math., 155 (2002), 1-103.
doi: 10.2307/3062150.![]() ![]() ![]() |
[16] |
G. Forni and C. Matheus, Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, J. Mod. Dyn., 8 (2014), 271-436.
doi: 10.3934/jmd.2014.8.271.![]() ![]() ![]() |
[17] |
I. Frankel, Meromorphic ${L}^2$ functions on flat surfaces, preprint, arXiv: 2005.13851, 2020.
![]() |
[18] |
É. Goujard, Sous-Variétés Totalement Géodésiques des Espaces de Modules de Riemann, https://www.bourbaki.fr/TEXTES/Exp1178-Goujard.pdf, 2021.
![]() |
[19] |
J. Hubbard and H. Masur, Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274.
doi: 10.1007/BF02395062.![]() ![]() ![]() |
[20] |
M. Kontsevich, Lyapunov exponents and Hodge theory, The Mathematical Beauty of Physics (Saclay, 1996) Adv. Ser. Math. Phys., World Sci. Publ., River Edge, NJ, 24 (1997), 318–332.
![]() ![]() |
[21] |
M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x.![]() ![]() ![]() |
[22] |
H. Masur, The Teichmüller flow is Hamiltonian, Proc. Amer. Math. Soc., 123 (1995), 3739-3747.
doi: 10.2307/2161902.![]() ![]() ![]() |
[23] |
C. T. McMullen, Navigating moduli space with complex twists, J. Eur. Math. Soc. (JEMS), 15 (2013), 1223-1243.
doi: 10.4171/JEMS/390.![]() ![]() ![]() |
[24] |
C. T. McMullen, R. E. Mukamel and A. Wright, Cubic curves and totally geodesic subvarieties of moduli space, Ann. of Math., 185 (2017), 957-990.
doi: 10.4007/annals.2017.185.3.6.![]() ![]() ![]() |
[25] |
M. Mirzakhani and A. Wright, Full-rank affine invariant submanifolds, Duke Math. J., 167 (2018), 1-40.
doi: 10.1215/00127094-2017-0036.![]() ![]() ![]() |
[26] |
K. Rafi, Hyperbolicity in Teichmüller space, Geom. Topol., 18 (2014), 3025-3053.
doi: 10.2140/gt.2014.18.3025.![]() ![]() ![]() |
[27] |
S. A. Wolpert, Schiffer variations and Abelian differentials, Adv. Math., 333 (2018), 497-522.
doi: 10.1016/j.aim.2018.05.019.![]() ![]() ![]() |
[28] |
A. Wright, Totally geodesic submanifolds of Teichmüller space, J. Differential Geom., 115 (2020), 565-575.
doi: 10.4310/jdg/1594260019.![]() ![]() ![]() |