-
Previous Article
Eigenvalue gaps for hyperbolic groups and semigroups
- JMD Home
- This Volume
-
Next Article
Some arithmetical aspects of renormalization in Teichmüller dynamics: On the occasion of Corinna Ulcigrai winning the Brin Prize
Hodge and Teichmüller
1. | Department of Mathematics, Brown University, 151, Thayer Street, Providence, RI 02912, USA |
2. | Department of Mathematics, University of Michigan, 530, Church Street, Ann Arbor, MI 48109, USA |
We consider the derivative $ D\pi $ of the projection $ \pi $ from a stratum of Abelian or quadratic differentials to Teichmüller space. A closed one-form $ \eta $ determines a relative cohomology class $ [\eta]_\Sigma $, which is a tangent vector to the stratum. We give an integral formula for the pairing of $ D\pi([\eta]_\Sigma) $ with a cotangent vector to Teichmüller space (a quadratic differential). We derive from this a comparison between Hodge and Teichmüller norms, which has been used in the work of Arana-Herrera on effective dynamics of mapping class groups, and which may clarify the relationship between dynamical and geometric hyperbolicity results in Teichmüller theory.
References:
[1] |
F. Arana-Herrera, Effective mapping class group dynamics I: Counting lattice points in Teichmüller space, preprint, arXiv: 2010.03123, 2020. |
[2] |
F. Arana-Herrera, Effective mapping class group dynamics II: Geometric intersection numbers, preprint, arXiv: 2104.01694, 2021. |
[3] |
F. Arana-Herrera, Effective Mapping Class Group Dynamics III: Counting Filling Closed Curves on Surfaces, preprint, arXiv: 2106.11386, 2021. |
[4] |
J. Athreya, A. Bufetov, A. Eskin and M. Mirzakhani,
Lattice point asymptotics and volume growth on Teichmüller space, Duke Math. J., 161 (2012), 1055-1111.
doi: 10.1215/00127094-1548443. |
[5] |
M. Bertola, D. Korotkin and C. Norton,
Symplectic geometry of the moduli space of projective structures in homological coordinates, Invent. Math., 210 (2017), 759-814.
doi: 10.1007/s00222-017-0739-z. |
[6] |
K. Burns, H. Masur and A. Wilkinson,
The Weil-Petersson geodesic flow is ergodic, Ann. of Math., 175 (2012), 835-908.
doi: 10.4007/annals.2012.175.2.8. |
[7] |
L. Carleson, P. W. Jones and J.-C. Yoccoz,
Julia and John, Bol. Soc. Brasil. Mat. (N.S.), 25 (1994), 1-30.
doi: 10.1007/BF01232933. |
[8] |
A. Douady and J. Hubbard,
On the density of Strebel differentials, Invent. Math., 30 (1975), 175-179.
doi: 10.1007/BF01425507. |
[9] |
A. Eskin, C. T. McMullen, R. E. Mukamel and A. Wright,
Billiards, quadrilaterals, and moduli spaces, J. Amer. Math. Soc., 33 (2020), 1039-1086.
doi: 10.1090/jams/950. |
[10] |
A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL$(2, \Bbb R)$ action on moduli space, Publ. Math. Inst. Hautes Études Sci., 127 (2018), 95–324.
doi: 10.1007/s10240-018-0099-2. |
[11] |
A. Eskin, M. Mirzakhani and A. Mohammadi,
Isolation, equidistribution, and orbit closures for the SL$(2, \Bbb R)$ action on moduli space, Ann. of Math., 182 (2015), 673-721.
doi: 10.4007/annals.2015.182.2.7. |
[12] |
A. Eskin, M. Mirzakhani and K. Rafi,
Counting closed geodesics in strata, Invent. Math., 215 (2019), 535-607.
doi: 10.1007/s00222-018-0832-y. |
[13] |
S. Filip,
Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, Invent. Math., 205 (2016), 617-670.
doi: 10.1007/s00222-015-0643-3. |
[14] |
S. Filip,
Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math., 183 (2016), 681-713.
doi: 10.4007/annals.2016.183.2.5. |
[15] |
G. Forni,
Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math., 155 (2002), 1-103.
doi: 10.2307/3062150. |
[16] |
G. Forni and C. Matheus,
Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, J. Mod. Dyn., 8 (2014), 271-436.
doi: 10.3934/jmd.2014.8.271. |
[17] |
I. Frankel, Meromorphic ${L}^2$ functions on flat surfaces, preprint, arXiv: 2005.13851, 2020. |
[18] |
É. Goujard, Sous-Variétés Totalement Géodésiques des Espaces de Modules de Riemann, https://www.bourbaki.fr/TEXTES/Exp1178-Goujard.pdf, 2021. |
[19] |
J. Hubbard and H. Masur,
Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274.
doi: 10.1007/BF02395062. |
[20] |
M. Kontsevich, Lyapunov exponents and Hodge theory, The Mathematical Beauty of Physics (Saclay, 1996) Adv. Ser. Math. Phys., World Sci. Publ., River Edge, NJ, 24 (1997), 318–332. |
[21] |
M. Kontsevich and A. Zorich,
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[22] |
H. Masur,
The Teichmüller flow is Hamiltonian, Proc. Amer. Math. Soc., 123 (1995), 3739-3747.
doi: 10.2307/2161902. |
[23] |
C. T. McMullen,
Navigating moduli space with complex twists, J. Eur. Math. Soc. (JEMS), 15 (2013), 1223-1243.
doi: 10.4171/JEMS/390. |
[24] |
C. T. McMullen, R. E. Mukamel and A. Wright,
Cubic curves and totally geodesic subvarieties of moduli space, Ann. of Math., 185 (2017), 957-990.
doi: 10.4007/annals.2017.185.3.6. |
[25] |
M. Mirzakhani and A. Wright,
Full-rank affine invariant submanifolds, Duke Math. J., 167 (2018), 1-40.
doi: 10.1215/00127094-2017-0036. |
[26] |
K. Rafi,
Hyperbolicity in Teichmüller space, Geom. Topol., 18 (2014), 3025-3053.
doi: 10.2140/gt.2014.18.3025. |
[27] |
S. A. Wolpert,
Schiffer variations and Abelian differentials, Adv. Math., 333 (2018), 497-522.
doi: 10.1016/j.aim.2018.05.019. |
[28] |
A. Wright,
Totally geodesic submanifolds of Teichmüller space, J. Differential Geom., 115 (2020), 565-575.
doi: 10.4310/jdg/1594260019. |
show all references
References:
[1] |
F. Arana-Herrera, Effective mapping class group dynamics I: Counting lattice points in Teichmüller space, preprint, arXiv: 2010.03123, 2020. |
[2] |
F. Arana-Herrera, Effective mapping class group dynamics II: Geometric intersection numbers, preprint, arXiv: 2104.01694, 2021. |
[3] |
F. Arana-Herrera, Effective Mapping Class Group Dynamics III: Counting Filling Closed Curves on Surfaces, preprint, arXiv: 2106.11386, 2021. |
[4] |
J. Athreya, A. Bufetov, A. Eskin and M. Mirzakhani,
Lattice point asymptotics and volume growth on Teichmüller space, Duke Math. J., 161 (2012), 1055-1111.
doi: 10.1215/00127094-1548443. |
[5] |
M. Bertola, D. Korotkin and C. Norton,
Symplectic geometry of the moduli space of projective structures in homological coordinates, Invent. Math., 210 (2017), 759-814.
doi: 10.1007/s00222-017-0739-z. |
[6] |
K. Burns, H. Masur and A. Wilkinson,
The Weil-Petersson geodesic flow is ergodic, Ann. of Math., 175 (2012), 835-908.
doi: 10.4007/annals.2012.175.2.8. |
[7] |
L. Carleson, P. W. Jones and J.-C. Yoccoz,
Julia and John, Bol. Soc. Brasil. Mat. (N.S.), 25 (1994), 1-30.
doi: 10.1007/BF01232933. |
[8] |
A. Douady and J. Hubbard,
On the density of Strebel differentials, Invent. Math., 30 (1975), 175-179.
doi: 10.1007/BF01425507. |
[9] |
A. Eskin, C. T. McMullen, R. E. Mukamel and A. Wright,
Billiards, quadrilaterals, and moduli spaces, J. Amer. Math. Soc., 33 (2020), 1039-1086.
doi: 10.1090/jams/950. |
[10] |
A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL$(2, \Bbb R)$ action on moduli space, Publ. Math. Inst. Hautes Études Sci., 127 (2018), 95–324.
doi: 10.1007/s10240-018-0099-2. |
[11] |
A. Eskin, M. Mirzakhani and A. Mohammadi,
Isolation, equidistribution, and orbit closures for the SL$(2, \Bbb R)$ action on moduli space, Ann. of Math., 182 (2015), 673-721.
doi: 10.4007/annals.2015.182.2.7. |
[12] |
A. Eskin, M. Mirzakhani and K. Rafi,
Counting closed geodesics in strata, Invent. Math., 215 (2019), 535-607.
doi: 10.1007/s00222-018-0832-y. |
[13] |
S. Filip,
Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, Invent. Math., 205 (2016), 617-670.
doi: 10.1007/s00222-015-0643-3. |
[14] |
S. Filip,
Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math., 183 (2016), 681-713.
doi: 10.4007/annals.2016.183.2.5. |
[15] |
G. Forni,
Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math., 155 (2002), 1-103.
doi: 10.2307/3062150. |
[16] |
G. Forni and C. Matheus,
Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, J. Mod. Dyn., 8 (2014), 271-436.
doi: 10.3934/jmd.2014.8.271. |
[17] |
I. Frankel, Meromorphic ${L}^2$ functions on flat surfaces, preprint, arXiv: 2005.13851, 2020. |
[18] |
É. Goujard, Sous-Variétés Totalement Géodésiques des Espaces de Modules de Riemann, https://www.bourbaki.fr/TEXTES/Exp1178-Goujard.pdf, 2021. |
[19] |
J. Hubbard and H. Masur,
Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274.
doi: 10.1007/BF02395062. |
[20] |
M. Kontsevich, Lyapunov exponents and Hodge theory, The Mathematical Beauty of Physics (Saclay, 1996) Adv. Ser. Math. Phys., World Sci. Publ., River Edge, NJ, 24 (1997), 318–332. |
[21] |
M. Kontsevich and A. Zorich,
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678.
doi: 10.1007/s00222-003-0303-x. |
[22] |
H. Masur,
The Teichmüller flow is Hamiltonian, Proc. Amer. Math. Soc., 123 (1995), 3739-3747.
doi: 10.2307/2161902. |
[23] |
C. T. McMullen,
Navigating moduli space with complex twists, J. Eur. Math. Soc. (JEMS), 15 (2013), 1223-1243.
doi: 10.4171/JEMS/390. |
[24] |
C. T. McMullen, R. E. Mukamel and A. Wright,
Cubic curves and totally geodesic subvarieties of moduli space, Ann. of Math., 185 (2017), 957-990.
doi: 10.4007/annals.2017.185.3.6. |
[25] |
M. Mirzakhani and A. Wright,
Full-rank affine invariant submanifolds, Duke Math. J., 167 (2018), 1-40.
doi: 10.1215/00127094-2017-0036. |
[26] |
K. Rafi,
Hyperbolicity in Teichmüller space, Geom. Topol., 18 (2014), 3025-3053.
doi: 10.2140/gt.2014.18.3025. |
[27] |
S. A. Wolpert,
Schiffer variations and Abelian differentials, Adv. Math., 333 (2018), 497-522.
doi: 10.1016/j.aim.2018.05.019. |
[28] |
A. Wright,
Totally geodesic submanifolds of Teichmüller space, J. Differential Geom., 115 (2020), 565-575.
doi: 10.4310/jdg/1594260019. |
[1] |
Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135 |
[2] |
Anton Zorich. Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials. Journal of Modern Dynamics, 2008, 2 (1) : 139-185. doi: 10.3934/jmd.2008.2.139 |
[3] |
Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405 |
[4] |
Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1 |
[5] |
Julien Grivaux, Pascal Hubert. Loci in strata of meromorphic quadratic differentials with fully degenerate Lyapunov spectrum. Journal of Modern Dynamics, 2014, 8 (1) : 61-73. doi: 10.3934/jmd.2014.8.61 |
[6] |
Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489 |
[7] |
Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393 |
[8] |
Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209 |
[9] |
David Aulicino, Chaya Norton. Shimura–Teichmüller curves in genus 5. Journal of Modern Dynamics, 2020, 16: 255-288. doi: 10.3934/jmd.2020009 |
[10] |
Ferrán Valdez. Veech groups, irrational billiards and stable abelian differentials. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1055-1063. doi: 10.3934/dcds.2012.32.1055 |
[11] |
Guizhen Cui, Yunping Jiang, Anthony Quas. Scaling functions and Gibbs measures and Teichmüller spaces of circle endomorphisms. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 535-552. doi: 10.3934/dcds.1999.5.535 |
[12] |
Chi Po Choi, Xianfeng Gu, Lok Ming Lui. Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Problems and Imaging, 2017, 11 (5) : 825-855. doi: 10.3934/ipi.2017039 |
[13] |
Matteo Costantini, André Kappes. The equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve. Journal of Modern Dynamics, 2017, 11: 17-41. doi: 10.3934/jmd.2017002 |
[14] |
Corentin Boissy. Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3433-3457. doi: 10.3934/dcds.2012.32.3433 |
[15] |
Anna Lenzhen, Babak Modami, Kasra Rafi. Teichmüller geodesics with $ d$-dimensional limit sets. Journal of Modern Dynamics, 2018, 12: 261-283. doi: 10.3934/jmd.2018010 |
[16] |
Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139 |
[17] |
Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271 |
[18] |
Stefano Marmi. Some arithmetical aspects of renormalization in Teichmüller dynamics: On the occasion of Corinna Ulcigrai winning the Brin Prize. Journal of Modern Dynamics, 2022, 18: 131-147. doi: 10.3934/jmd.2022006 |
[19] |
Ludwig Gauckler, Daniel Weiss. Metastable energy strata in numerical discretizations of weakly nonlinear wave equations. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3721-3747. doi: 10.3934/dcds.2017158 |
[20] |
Jiahui Chen, Rundong Zhao, Yiying Tong, Guo-Wei Wei. Evolutionary de Rham-Hodge method. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3785-3821. doi: 10.3934/dcdsb.2020257 |
2021 Impact Factor: 0.641
Tools
Article outline
[Back to Top]