We prove a rigidity result for cocycles from higher rank lattices to $ \mathrm{Out}(F_N) $ and more generally to the outer automorphism group of a torsion-free hyperbolic group. More precisely, let $ G $ be either a product of connected higher rank simple algebraic groups over local fields, or a lattice in such a product. Let $ G \curvearrowright X $ be an ergodic measure-preserving action on a standard probability space, and let $ H $ be a torsion-free hyperbolic group. We prove that every Borel cocycle $ G\times X\to \mathrm{Out}(H) $ is cohomologous to a cocycle with values in a finite subgroup of $ \mathrm{Out}(H) $. This provides a dynamical version of theorems of Farb–Kaimanovich–Masur and Bridson–Wade asserting that every homomorphism from $ G $ to either the mapping class group of a finite-type surface or the outer automorphism group of a free group, has finite image.
The main new geometric tool is a barycenter map that associates to every triple of points in the boundary of the (relative) free factor graph a finite set of (relative) free splittings.
Citation: |
[1] | S. Adams, Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, Topology, 33 (1994), 765-783. doi: 10.1016/0040-9383(94)90007-8. |
[2] | S. Adams, Indecomposability of equivalence relations generated by word hyperbolic groups, Topology, 33 (1994), 785-798. doi: 10.1016/0040-9383(94)90008-6. |
[3] | S. Adams, Reduction of cocycles with hyperbolic targets, Ergodic Theory Dynam. Systems, 16 (1996), 1111-1145. doi: 10.1017/S0143385700009949. |
[4] | C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, in Monographies de L'Enseignement Mathématique, 36, L'Enseignement Mathématique, Geneva, 2000. |
[5] | S. Adams, G. A. Elliott and T. Giordano, Amenable actions of groups, Trans. Amer. Math. Soc., 344 (1994), 803-822. doi: 10.1090/S0002-9947-1994-1250814-5. |
[6] | U. Bader, Cocycle superrigidity, MathOverflow, https://mathoverflow.net/a/301246/81562. |
[7] | J. Behrstock and R. Charney, Divergence and quasimorphisms of right-angled Artin groups, Math. Ann., 352 (2012), 339-356. doi: 10.1007/s00208-011-0641-8. |
[8] | U. Bader and A. Furman, Superrigidity via Weyl groups: Hyperbolic-like targets, in preparation. |
[9] | M. Bestvina and M. Feighn, Outer limits, preprint, 1994. |
[10] | U. Bader and A. Furman, Boundaries, rigidity of representations, and Lyapunov exponents, Proceedings of ICM 2014, Invited Lectures, 3 (2014), 71-96. |
[11] | M. Bestvina and M. Feighn, Hyperbolicity of the complex of free factors, Adv. Math., 256 (2014), 104-155. doi: 10.1016/j.aim.2014.02.001. |
[12] | M. Bestvina, M. Feighn and M. Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal., 7 (1997), 215-244. doi: 10.1007/PL00001618. |
[13] | U. Bader and A. Furman, Boundaries, Weyl groups, and superrigidity, Electron. Res. Annouc. Math. Sci., 19 (2012), 41-48. doi: 10.3934/era.2012.19.41. |
[14] | U. Bader and T. Gelander, Equicontinuous actions of semisimple groups, Groups Geom. Dyn., 11 (2017), 1003-1039. doi: 10.4171/GGD/420. |
[15] | M. Bestvina, V. Guirardel and C. Horbez, Boundary amenability of $\text{Out}({F}_{N})$, preprint, arXiv: 1705.07017, 2017. |
[16] | M. Burger and N. Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. (JEMS), 1 (1999), 199-235. doi: 10.1007/s100970050007. |
[17] | A. Borel, Linear algebraic groups, in Graduate Texts in Mathematics, 126, 2nd edition, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0941-6. |
[18] | B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput., 22 (2012), 66 pp. doi: 10.1142/S0218196712500166. |
[19] | M. Bestvina and P. Reynolds, The boundary of the complex of free factors, Duke Math. J., 164 (2015), 2213-2251. doi: 10.1215/00127094-3129702. |
[20] | A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 55-150. |
[21] | M. R. Bridson and R. D. Wade, Actions of higher-rank lattices on free groups, Compos. Math., 147 (2011), 1573-1580. doi: 10.1112/S0010437X11005598. |
[22] | I. Chatterji, T. Fernós and A. Iozzi, The median class and superrigidity of actions on $\mathrm{CAT}(0)$ cube complexes, J. Topol., 9 (2016), 349-400. doi: 10.1112/jtopol/jtu025. |
[23] | T. Coulbois, A. Hilion and M. Lustig, Non-unique ergodicity, observers' topology and the dual algebraic lamination for $\mathbb{R}$-trees, Illinois J. Math., 51 (2007), 897-911. |
[24] | T. Coulbois, A. Hilion and M. Lustig, $\mathbb{R}$-trees and laminations for free groups. Ⅰ. Algebraic laminations, J. Lond. Math. Soc. (2), 78 (2008), 723-736. doi: 10.1112/jlms/jdn052. |
[25] | T. Coulbois, A. Hilion and M. Lustig, $\mathbb{R}$-trees and laminations for free groups. Ⅱ. The dual lamination of an $\mathbb{R}$-tree, J. Lond. Math. Soc. (2), 78 (2008), 737-754. doi: 10.1112/jlms/jdn053. |
[26] | T. Coulbois, A. Hilion and P. Reynolds, Indecomposable ${F}_{N}$-trees and minimal laminations, Groups Geom. Dyn., 9 (2015), 567-597. doi: 10.4171/GGD/321. |
[27] | M. M. Cohen and M. Lustig, Very small group actions on $\mathbb{{R}}$-trees and Dehn twist automorphisms, Topology, 34 (1995), 575-617. doi: 10.1016/0040-9383(94)00038-M. |
[28] | M. Culler and J. W. Morgan, Group actions on $\mathbb{R}$-trees, Proc. London Math. Soc. (3), 55 (1987), 571-604. doi: 10.1112/plms/s3-55.3.571. |
[29] | M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math., 84 (1986), 91-119. doi: 10.1007/BF01388734. |
[30] | B. Duchesne, Groups acting on spaces of non-positive curvature, in Handbook of Group Actions. Vol. III., Adv. Lect. Math. (ALM), 40, Int. Press, Sommerville, MA, 2018, 101–141. |
[31] | R. E. Edwards, Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. |
[32] | T. Fernós, The Furstenberg-Poisson boundary and $\mathrm{CAT}(0)$ cube complexes, Ergodic Theory Dynam. Systems, 38 (2018), 2180-2223. doi: 10.1017/etds.2016.124. |
[33] | T. Fernós, J. Lécureux and F. Mathéus, Random walks and boundaries of CAT(0) cubical complexes, Comment. Math. Helv., 93 (2018), 291-333. doi: 10.4171/CMH/435. |
[34] | B. Farb and H. Masur, Superrigidity and mapping class groups, Topology, 37 (1998), 1169-1176. doi: 10.1016/S0040-9383(97)00099-2. |
[35] | B. Farb and D. Margalit, A primer on mapping class groups, in Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012. |
[36] | S. Francaviglia and A. Martino, Stretching factors, metrics and train tracks for free products, Illinois J. Math., 59 (2015), 859-899. |
[37] | K. Fujiwara, On the outer automorphism group of a hyperbolic group, Israel J. Math., 131 (2002), 277-284. doi: 10.1007/BF02785862. |
[38] | A. Furman, Gromov's measure equivalence and rigidity of higher rank lattices, Ann. Math. (2), 150 (1999), 1059-1081. doi: 10.2307/121062. |
[39] | V. Guirardel and C. Horbez, Algebraic laminations for free products and arational trees, Algebr. Geom. Topol., 19 (2019), 2283-2400. doi: 10.2140/agt.2019.19.2283. |
[40] | V. Guirardel and C. Horbez, Boundaries of relative factor graphs and subgroup classification for automorphisms of free products, Geom. Topol., 26 (2022), 71-126. doi: 10.2140/gt.2022.26.71. |
[41] | V. Guirardel and G. Levitt, The outer space of a free product, Proc. Lond. Math. Soc. (3), 94 (2007), 695-714. doi: 10.1112/plms/pdl026. |
[42] | V. Guirardel and G. Levitt, Trees of cylinders and canonical splittings, Geom. Topol., 15 (2011), 977-1012. doi: 10.2140/gt.2011.15.977. |
[43] | V. Guirardel and G. Levitt, JSJ decompositions of groups, Astérisque, 2017. |
[44] | V. Guirardel, Dynamics of $\text{Out}({F}_n)$ on the boundary of outer space, Ann. Sci. École Norm. Sup. (4), 33 (2000), 433-465. doi: 10.1016/S0012-9593(00)00117-8. |
[45] | T. Haettel, Hyperbolic rigidity of higher rank lattices, Ann. Sci. Éc. Norm. Supér. (4), 53 (2020), 439-468. doi: 10.24033/asens.2425. |
[46] | U. Hamenstädt, Geometry of the mapping class groups. Ⅰ. Boundary amenability, Invent. Math., 175 (2009), 545-609. doi: 10.1007/s00222-008-0158-2. |
[47] | U. Hamenstädt, The boundary of the free factor graph and the free splitting graph, preprint, arXiv: 1211.1630, 2012. |
[48] | C. Horbez and J. Huang, Measure equivalence classification of transvection-free right-angled Artin groups, preprint, arXiv: 2010.03613, 2020. doi: 10.5802/jep.199. |
[49] | M. Handel and L. Mosher, The free splitting complex of a free groupfactor: Hyperbolicity, Geometry and Topology, 17 (2013), 1581-1670. doi: 10.2140/gt.2013.17.1581. |
[50] | C. Horbez, The Tits alternative for the automorphism group of a free product, preprint, arXiv: 1408.0546, 2014. |
[51] | C. Horbez, Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, J. Topol., 9 (2016), 401-450. doi: 10.1112/jtopol/jtv045. |
[52] | C. Horbez, The boundary of the outer space of a free product, Israel J. Math., 221 (2017), 179-234. doi: 10.1007/s11856-017-1565-0. |
[53] | S. Jackson, A. S. Kechris and A. Louveau, Countable Borel equivalence relations, J. Math. Log., 2 (2002), 1-80. doi: 10.1142/S0219061302000138. |
[54] | V. A. Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology, Geom. Funct. Anal., 13 (2003), 852-861. doi: 10.1007/s00039-003-0433-8. |
[55] | A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4. |
[56] | Y. Kida, The mapping class group from the viewpoint of measure equivalence theory, Mem. Amer. Math. Soc., 196 (2008), 916. doi: 10.1090/memo/0916. |
[57] | E. Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller space, preprint, arXiv: 1803.10339, 1999. |
[58] | V. A. Kaimanovich and H. Masur, The Poisson boundary of the mapping class group, Invent. Math., 125 (1996), 221-264. doi: 10.1007/s002220050074. |
[59] | G. Levitt, Automorphisms of hyperbolic groups and graphs of groups, Geom. Dedic., 114 (2005), 49-70. doi: 10.1007/s10711-004-1492-1. |
[60] | G. A. Margulis, Discrete subgroups of semisimple Lie groups, in Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17, Springer-Verlag, Berlin, 1991. |
[61] | M. Mimura, Superrigidity from Chevalley groups into acylindrically hyperbolic groups via quasi-cocycles, J. Eur. Math. Soc. (JEMS), 20 (2018), 103-117. doi: 10.4171/JEMS/760. |
[62] | H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. Ⅰ. Hyperbolicity, Invent. Math., 138 (1999), 103-149. doi: 10.1007/s002220050343. |
[63] | N. Monod and Y. Shalom, Negative curvature from a cohomological viewpoint and cocycle superrigidity, C. R. Math Acad. Sci. Paris, 337 (2003), 635-638. doi: 10.1016/j.crma.2003.10.002. |
[64] | N. Monod and Y. Shalom, Cocycle superrigidity and bounded cohomology for negatively curved spaces, J. Differential Geom., 67 (2004), 395-455. |
[65] | N. Monod and Y. Shalom, Orbit equivalence rigidity and bounded cohomology, Ann. Math. (2), 164 (2006), 825-878. doi: 10.4007/annals.2006.164.825. |
[66] | A. Nevo and M. Sageev, The Poisson boundary of $\mathrm{CAT}(0)$ cube complex groups, Groups Geom. Dyn., 7 (2013), 653-695. doi: 10.4171/GGD/202. |
[67] | D. S. Ornstein and B. Weiss, Ergodic theory of amenable group actions. Ⅰ. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.), 2 (1980), 161-164. doi: 10.1090/S0273-0979-1980-14702-3. |
[68] | N. Ozawa, Boundary amenability of relatively hyperbolic groups, Topology Appl., 153 (2006), 2624-2630. doi: 10.1016/j.topol.2005.11.001. |
[69] | F. Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math., 94 (1988), 53-80. doi: 10.1007/BF01394344. |
[70] | F. Paulin, The Gromov topology on $\mathbb{R}$-trees, Topology Appl., 32 (1989), 197-221. doi: 10.1016/0166-8641(89)90029-1. |
[71] | G. Prasad, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull. Soc. Math. France, 110 (1982), 197-202. |
[72] | P. Reynolds, Reducing systems for very small trees, preprint, arXiv: 1211.3378, 2012. |
[73] | G. Rousseau, Immeubles des groupes réductifs sur les corps locaux, Thèse de Doctorat. Publications Mathématiques d'Orsay, Université Paris XI, U.E.R. Mathématique, Orsay, 1977. |
[74] | S. M. Srivastava, Selection and representation theorems for $\sigma$-compact valued multifunctions, Proc. Amer. Math. Soc., 83 (1981), 775-780. doi: 10.2307/2044253. |
[75] | R. J. Spatzier and R. J. Zimmer, Fundamental groups of negatively curved manifolds and actions of semisimple groups, Topology, 30 (1991), 591-601. doi: 10.1016/0040-9383(91)90041-2. |
[76] | V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc., 109 (1963), 191-220. doi: 10.1090/S0002-9947-1963-0159923-5. |
[77] | J. Väisälä, Gromov hyperbolic spaces, Expo. Math., 23 (2005), 187-231. doi: 10.1016/j.exmath.2005.01.010. |
[78] | R. J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis, 27 (1978), 350-372. doi: 10.1016/0022-1236(78)90013-7. |
[79] | R. J. Zimmer, Strong rigidity for ergodic actions of semisimplie Lie groups, Ann. Math. (2), 112 (1980), 511-529. doi: 10.2307/1971090. |
[80] | R. J. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics, 81, Birkhäuser Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9488-4. |