We prove that if $ G $ is a countably infinite group and $ (L, \lambda) $ and $ (K, \kappa) $ are probability spaces having equal Shannon entropy, then the Bernoulli shifts $ G \curvearrowright (L^G, \lambda^G) $ and $ G \curvearrowright (K^G, \kappa^G) $ are isomorphic. This extends Ornstein's famous isomorphism theorem to all countably infinite groups. Our proof builds on a slightly weaker theorem by Lewis Bowen in 2011 that required both $ \lambda $ and $ \kappa $ have at least $ 3 $ points in their support. We furthermore produce finitary isomorphisms in the case where both $ L $ and $ K $ are finite.
Citation: |
[1] |
A. Alpeev and B. Seward, Krieger's finite generator theorem for ergodic actions of countable groups Ⅲ, Ergodic Theory Dynam. Systems, 41 (2021), 2881-2917.
doi: 10.1017/etds.2020.89.![]() ![]() ![]() |
[2] |
L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc., 23 (2010), 217-245.
doi: 10.1090/S0894-0347-09-00637-7.![]() ![]() ![]() |
[3] |
L. Bowen, Sofic entropy and amenable groups, Ergodic Theory Dynam. Systems, 32 (2012), 427-466.
doi: 10.1017/S0143385711000253.![]() ![]() ![]() |
[4] |
L. Bowen, Every countably infinite group is almost Ornstein, Dynamical Systems and Group Actions, 67–78
doi: 10.1090/conm/567/11234.![]() ![]() ![]() |
[5] |
S. Gao and S. Jackson, Countable abelian group actions and hyperfinite equivalence relations, Invent. Math., 201 (2015), 309-383.
doi: 10.1007/s00222-015-0603-y.![]() ![]() ![]() |
[6] |
S. Jackson, A. S. Kechris and A. Louveau, Countable Borel equivalence relations, J. Math. Logic, 2 (2002), 1-80.
doi: 10.1142/S0219061302000138.![]() ![]() ![]() |
[7] |
M. Keane and M. Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math. (2), 109 (1979), 397-406.
doi: 10.2307/1971117.![]() ![]() ![]() |
[8] |
A. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4190-4.![]() ![]() ![]() |
[9] |
D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Invent. Math., 186 (2011), 501-558.
doi: 10.1007/s00222-011-0324-9.![]() ![]() ![]() |
[10] |
D. Kerr and H. Li, Soficity, amenability, and dynamical entropy, Amer. J. Math., 135 (2013), 721-761.
doi: 10.1353/ajm.2013.0024.![]() ![]() ![]() |
[11] |
D. Kerr and H. Li, Bernoulli actions and infinite entropy, Groups Geom. Dyn., 5 (2011), 663-672.
doi: 10.4171/GGD/142.![]() ![]() ![]() |
[12] |
J. C. Kieffer, A generalized Shannon–McMillan theorem for the action of an amenable group on a probability space, Ann. Prob., 3 (1975), 1031-1037.
doi: 10.1214/aop/1176996230.![]() ![]() ![]() |
[13] |
A. N. Kolmogorov, New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces, Dokl. Akad. Nauk SSSR, 119 (1958), 861-864.
![]() ![]() |
[14] |
A. N. Kolmogorov, Entropy per unit time as a metric invariant for automorphisms, Dokl. Akad. Nauk SSSR, 124 (1959), 754-755.
![]() ![]() |
[15] |
D. V. Lytkina, Structure of a group with elements of order at most 4, Siberian Math. J., 48 (2007), 283-287.
doi: 10.1007/s11202-007-0028-y.![]() ![]() ![]() |
[16] |
A. S. Mamontov, Groups of exponent 12 without elements of order 12, Siberian Math. J., 54 (2013), 114-118.
doi: 10.1134/S003744661301014X.![]() ![]() ![]() |
[17] |
L. D. Mešalkin, A case of isomorphism of Bernoulli schemes, Dokl. Akad. Nauk SSSR, 128 (1959), 41-44.
![]() ![]() |
[18] |
A. Yu. Olshanskii, An infinite group with subgroups of prime orders, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 309-321.
![]() ![]() |
[19] |
D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math., 4 (1970), 337-348.
doi: 10.1016/0001-8708(70)90029-0.![]() ![]() ![]() |
[20] |
D. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Advances in Math., 5 (1970), 339-348.
doi: 10.1016/0001-8708(70)90008-3.![]() ![]() ![]() |
[21] |
D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48 (1987), 1-141.
doi: 10.1007/BF02790325.![]() ![]() ![]() |
[22] |
B. Petit, Deux schémas de Bernoulli d'alphabet dénombrable et d'entropie infinie sont finitairement isomorphes, Z. Wahrsch. Verw. Gebiete, 59 (1982), 161-168.
doi: 10.1007/BF00531740.![]() ![]() ![]() |
[23] |
S. Schneider and B. Seward, Locally nilpotent groups and hyperfinite equivalence relations, preprint, arXiv: 1308.5853, 2013.
![]() |
[24] |
B. Seward, Krieger's finite generator theorem for ergodic actions of countable groups Ⅰ, Invent. Math., 215 (2019), 265-310.
doi: 10.1007/s00222-018-0826-9.![]() ![]() ![]() |
[25] |
B. Seward, Krieger's finite generator theorem for ergodic actions of countable groups Ⅱ, J. Mod. Dyn., 15 (2019), 1-39.
doi: 10.3934/jmd.2019012.![]() ![]() ![]() |
[26] |
Ya. G. Sinai, On the concept of entropy for a dynamical system, Dokl. Akad. Nauk SSSR, 124 (1959), 768-771.
![]() ![]() |
[27] |
Ya. G. Sinai, A weak isomorphism of transformations with invariant measure, Dokl. Akad. Nauk SSSR, 147 (1962), 797-800.
![]() ![]() |
[28] |
A. M. Stepin, Bernoulli shifts on groups, Dokl. Akad. Nauk SSSR, 223 (1975), 300-302.
![]() ![]() |