For negative-torsion maps on the annulus we show that on every $ \mathscr{C}^1 $ essential curve there is at least one point of zero torsion. As an outcome we deduce that the Hausdorff dimension of the set of points of zero torsion is greater or equal 1. As a byproduct we obtain a Birkhoff's Theorem-like result for $ \mathscr{C}^1 $ essential curves in the framework of negative-torsion maps.
Citation: |
[1] |
S. B. Angenent, The periodic orbits of an area preserving twist map, Comm. Math. Phys., 115 (1988), 353-374.
doi: 10.1007/BF01218016.![]() ![]() ![]() |
[2] |
F. Béguin and Z. R. Boubaker, Existence of orbits with non-zero torsion for certain types of surface diffeomorphisms, J. Math. Soc. Japan, 65 (2013), 137-168.
doi: 10.2969/jmsj/06510137.![]() ![]() ![]() |
[3] |
M. Bialy and L. Polterovich, Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom, Invent. Math., 97 (1989), 291-303.
doi: 10.1007/BF01389043.![]() ![]() ![]() |
[4] |
M. Bialy and L. Polterovich, Hamiltonian systems, Lagrangian tori and Birkhoff's theorem, Math. Ann., 292 (1992), 619-627.
doi: 10.1007/BF01444639.![]() ![]() ![]() |
[5] |
G. D. Birkhoff, Surface transformations and their dynamical applications, Acta Math., 43 (1922), 1-119.
doi: 10.1007/BF02401754.![]() ![]() ![]() |
[6] |
S. Crovisier, Ensembles de torsion nulle des applications déviant la verticale, Bull. Soc. Math. France, 131 (2003), 23-39.
doi: 10.24033/bsmf.2435.![]() ![]() ![]() |
[7] |
A. Florio, Asymptotic Maslov Indices, PhD thesis, Avignon Université, 2019.
![]() |
[8] |
A. Florio, Torsion and linking number for a surface diffeomorphism, Math. Z., 292 (2019), 231-265.
doi: 10.1007/s00209-018-2182-2.![]() ![]() ![]() |
[9] |
M. Gidea and C. Robinson, Diffusion along transition chains of invariant tori and Aubry-Mather sets, Ergodic Theory Dynam. Systems, 33 (2013), 1401-1449.
doi: 10.1017/S0143385712000363.![]() ![]() ![]() |
[10] |
A. Gramain, Le type d'homotopie du groupe des difféomorphismes d'une surface compacte, Ann. Sci. École Norm. Sup. (4), 6 (1973), 53–66.
doi: 10.24033/asens.1242.![]() ![]() ![]() |
[11] |
M. R. Herman, Sur les Courbes Invariantes par les Difféomorphismes de L'anneau. Vol. 1, Astérisque, vol. 103-104, with an appendix by Albert Fathi, Société Mathématique de France, Paris, 1983.
![]() ![]() |
[12] |
M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, no. 33, Springer-Verlag, New York-Heidelberg, 1976.
![]() |
[13] |
S. Hu, A variational principle associated to positive tilt maps, Comm. Math. Phys., 191 (1998), 627-639.
doi: 10.1007/s002200050281.![]() ![]() ![]() |
[14] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.
![]() |
[15] |
P. Le Calvez, Propriétés des attracteurs de Birkhoff, Ergodic Theory Dynam. Systems, 8 (1988), 241-310.
doi: 10.1017/S0143385700004442.![]() ![]() ![]() |
[16] |
P. Le Calvez, Propriétés dynamiques des difféomorphismes de l'anneau et du tore, Astérisque, 204 (1991), 131 pp.
![]() ![]() |
[17] |
J. N. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology, 21 (1982), 457-467.
doi: 10.1016/0040-9383(82)90023-4.![]() ![]() ![]() |
[18] |
J. N. Mather, Variational construction of orbits of twist diffeomorphisms, J. Amer. Math. Soc., 4 (1991), 207-263.
doi: 10.1090/S0894-0347-1991-1080112-5.![]() ![]() ![]() |
[19] |
L. Polterovich, The second Birkhoff theorem for optical Hamiltonian systems, Proc. Amer. Math. Soc., 113 (1991), 513-516.
doi: 10.1090/S0002-9939-1991-1043418-3.![]() ![]() ![]() |
[20] |
D. Ruelle, Rotation numbers for diffeomorphisms and flows, Ann. Inst. H. Poincaré Phys. Théor., 42 (1985), 109-115.
![]() ![]() |
[21] |
S. Smale, Diffeomorphisms of the $2$-sphere, Proc. Amer. Math. Soc., 10 (1959), 621-626.
doi: 10.1090/S0002-9939-1959-0112149-8.![]() ![]() ![]() |
Phase portrait of the pendulum system of Example 2.6
The simple curve built in the proof of Proposition 3.10