We study slow entropy invariants for abelian unipotent actions $ U $ on any finite volume homogeneous space $ G/\Gamma $. For every such action we show that the topological slow entropy can be computed directly from the dimension of a special decomposition of $ {{\rm{Lie}}}(G) $ induced by $ {{\rm{Lie}}}(U) $. Moreover, we are able to show that the metric slow entropy of the action coincides with its topological slow entropy. As a corollary, we obtain that the complexity of any abelian horocyclic action is only related to the dimension of $ G $. This generalizes the rank one results from [
Citation: |
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9.![]() ![]() ![]() |
[2] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.
doi: 10.1090/S0002-9947-1971-0274707-X.![]() ![]() ![]() |
[3] |
A. Brudnyi, On local behavior of analytic functions, J. Funct. Anal., 169 (1999), 481-493.
doi: 10.1006/jfan.1999.3481.![]() ![]() ![]() |
[4] |
Ju. A. Brudnyǐ and M. I. Ganzburg, A certain extremal problem for polynomials in $n$ variables, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 344-355.
![]() ![]() |
[5] |
E. DiBenedetto, Real Analysis, second edition, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser/Springer, New York, 2016.
doi: 10.1007/978-1-4939-4005-9.![]() ![]() ![]() |
[6] |
E. I. Dinaburg, A correlation between topological entropy and metric entropy, (Russian) Dokl. Akad. Nauk SSSR, 190 (1970), 19-22.
![]() ![]() |
[7] |
S. Ferenczi, Measure-theoretic complexity of ergodic systems, Israel J. Math., 100 (1997), 189-207.
doi: 10.1007/BF02773640.![]() ![]() ![]() |
[8] |
T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350.
doi: 10.1112/plms/s3-29.2.331.![]() ![]() ![]() |
[9] |
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, corrected reprint of the 1978 original, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/034.![]() ![]() ![]() |
[10] |
M. Hochman, Slow entropy and differentiable models for infinite-measure preserving $\mathbb{Z}^k$ actions, Ergodic Theory Dynam. Systems, 32 (2012), 653-674.
doi: 10.1017/S0143385711000782.![]() ![]() ![]() |
[11] |
B. M. Hood, Topological entropy and uniform spaces, J. London Math. Soc., 8 (1974), 633-641.
doi: 10.1112/jlms/s2-8.4.633.![]() ![]() ![]() |
[12] |
A. Kanigowski, Slow entropy for some smooth flows on surfaces, Israel J. Math., 226 (2018), 535-577.
doi: 10.1007/s11856-018-1706-0.![]() ![]() ![]() |
[13] |
A. Kanigowski, A. Katok and D. Wei, Survey on entropy-type invariants of sub-exponential growth in dynamical systems, submiited, arXiv: 2004.04655.
![]() |
[14] |
A. Kanigowski, K. Vinhage and D. Wei, Slow entropy of parabolic flows, Commun. Math. Phys., 370 (2019), 449-474.
doi: 10.1007/s00220-019-03512-6.![]() ![]() ![]() |
[15] |
A. B. Katok, Time change, monotone equivalence, and standard dynamical systems, Dokl. Akad. Nauk SSSR, 223 (1975), 789-792.
![]() ![]() |
[16] |
A. B. Katok, Monotone equivalence in ergodic theory, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 104-157.
![]() ![]() |
[17] |
A. Katok, S. Katok and F. Rodriguez Hertz, The Fried average entropy and slow entropy for actions of higher rank abelian groups, Geom. Funct. Anal., 24 (2014), 1204-1228.
doi: 10.1007/s00039-014-0284-5.![]() ![]() ![]() |
[18] |
A. Katok and J.-P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measure-preserving transformations, Ann. Inst. H. Poincaré Probab. Statist., 33 (1997), 323-338.
doi: 10.1016/S0246-0203(97)80094-5.![]() ![]() ![]() |
[19] |
J. L. Kelley, General Topology, reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, no. 27, Springer-Verlag, New York-Berlin, 1975.
![]() ![]() |
[20] |
A. G. Kushnirenko, Metric invariants of entropy type, Uspehi Mat. Nauk, 22 (1967), 57-65.
![]() ![]() |
[21] |
J. M. Lee, Introduction to Smooth Manifolds, second edition, Graduate Texts in Mathematics, 218, Springer, New York, 2013.
![]() ![]() |
[22] |
E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259-295.
doi: 10.1007/s002220100162.![]() ![]() ![]() |