We prove a pointwise ergodic theorem for quasi-probability-measure-preserving (quasi-pmp) locally countable measurable graphs, equivalently, Schreier graphs of quasi-pmp actions of countable groups. For ergodic graphs, the theorem gives an increasing sequence of Borel subgraphs with finite connected components over which the averages of any $ L^1 $ function converges to its expectation. This implies that every (not necessarily pmp) locally countable ergodic Borel graph on a standard probability space contains an ergodic hyperfinite subgraph. A consequence of this is that every ergodic treeable equivalence relation has an ergodic hyperfinite free factor.
The pmp case of the main theorem was first proven by R. Tucker-Drob using a deep result from probability theory. Our proof is different: it is self-contained and applies more generally to quasi-pmp graphs. Among other things, it involves introducing a graph invariant concerning asymptotic averages of functions and a method of tiling a large part of the space with finite sets with prescribed properties. The non-pmp setting additionally exploits a new quasi-order called visibility to analyze the interplay between the Radon–Nikodym cocycle and the graph structure, providing a sufficient condition for hyperfiniteness.
Citation: |
[1] |
M. Abért and B. Weiss, Bernoulli actions are weakly contained in any free action, Ergodic Theory Dynam. Systems, 33 (2013), 323-333.
doi: 10.1017/S0143385711000988.![]() ![]() ![]() |
[2] |
L. Bowen and A. Nevo, Amenable equivalence relations and the construction of ergodic averages for group actions, J. Anal. Math., 126 (2015), 359-388.
doi: 10.1007/s11854-015-0021-5.![]() ![]() ![]() |
[3] |
A. I. Bufetov, Operator ergodic theorems for actions of free semigroups and groups, Funct. Anal. Appl., 34 (2000), 239-251.
doi: 10.1023/A:1004116205980.![]() ![]() ![]() |
[4] |
A. Connes, J. Feldman and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems, 1 (1981), 431-450.
doi: 10.1017/S014338570000136X.![]() ![]() ![]() |
[5] |
A. Ditzen, Definable equivalence relations on Polish spaces, Thesis (Ph.D.)–California Institute of Technology, ProQuest LLC, Ann Arbor, MI, 1992.
![]() ![]() |
[6] |
R. Dougherty, S. Jackson and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc., 341 (1994), 193-225.
doi: 10.1090/S0002-9947-1994-1149121-0.![]() ![]() ![]() |
[7] |
Y. N. Dowker, A new proof of the general ergodic theorem, Acta Sci. Math. (Szeged), 12 (1950), 162-166.
![]() ![]() |
[8] |
R. Durrett, Probability:Theory and Examples, Cambridge Series in Statistical and Probabilistic Mathematics, 49, 5th edition, Cambridge University Press, Cambridge, 2019.
doi: 10.1017/9781108591034.![]() ![]() ![]() |
[9] |
G. Elek, The combinatorial cost, Enseign. Math. (2), 53 (2007), 225-235.
![]() ![]() |
[10] |
J. Feldman, A ratio ergodic theorem for commuting, conservative, invertible transformations with quasi-invariant measure summed over symmetric hypercubes, Ergodic Theory Dynam. Systems, 27 (2007), 1135-1142.
doi: 10.1017/S0143385707000119.![]() ![]() ![]() |
[11] |
J. Feldman and C. C. Moore, Ergodic equivalence relations and von Neumann algebras. I, Trans. Amer. Math. Soc., 234 (1977), 289-324.
doi: 10.1090/S0002-9947-1977-0578656-4.![]() ![]() ![]() |
[12] |
K. Fujiwara and A. Nevo, Maximal and pointwise ergodic theorems for word-hyperbolic groups, Ergodic Theory Dynam. Systems, 18 (1998), 843-858.
doi: 10.1017/S0143385798117443.![]() ![]() ![]() |
[13] |
D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann's problem, Invent. Math., 177 (2009), 533-540.
doi: 10.1007/s00222-009-0187-5.![]() ![]() ![]() |
[14] |
J. Grebík and V. Rozhoň, Local Problems on Grids from the Perspective of Distributed Algorithms, Finitary Factors, and Descriptive Combinatorics, preprint, arXiv: 2103.08394, 2021.
![]() |
[15] |
H. Hatami, L. Lovász and B. Szegedy, Limits of locally-globally convergent graph sequences, Geom. Funct. Anal., 24 (2014), 269-296.
doi: 10.1007/s00039-014-0258-7.![]() ![]() ![]() |
[16] |
M. Hochman, On the ratio ergodic theorem for group actions, J. Lond. Math. Soc. (2), 88 (2013), 465-482.
doi: 10.1112/jlms/jdt022.![]() ![]() ![]() |
[17] |
T. Hutchcroft and A. Nachmias, Indistinguishability of trees in uniform spanning forests, Probab. Theory Related Fields, 168 (2017), 113-152.
doi: 10.1007/s00440-016-0707-3.![]() ![]() ![]() |
[18] |
S. Jackson, A. S. Kechris and A. Louveau, Countable Borel equivalence relations, Journal of Math. Logic, 2 (2002), 1-80.
doi: 10.1142/S0219061302000138.![]() ![]() ![]() |
[19] |
A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4190-4.![]() ![]() ![]() |
[20] |
A. S. Kechris, Global Aspects of Ergodic Group Actions, Mathematical Surveys and Monographs, 160, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/surv/160.![]() ![]() ![]() |
[21] |
A. S. Kechris and B. Miller, Topics in Orbit Equivalence, Lecture Notes in Mathematics, 1852, Springer-Verlag, Berlin, 2004.
doi: 10.1007/b99421.![]() ![]() ![]() |
[22] |
E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259–295.
doi: 10.1007/s002220100162.![]() ![]() ![]() |
[23] |
B. Miller, The existence of measures of a given cocycle, II: Probability measures, Ergodic Theory Dynam. Systems, 28 (2008), 1615-1633.
doi: 10.1017/S0143385707001125.![]() ![]() ![]() |
[24] |
B. D. Miller and A. Tserunyan, Edge sliding and ergodic hyperfinite decomposition, preprint, arXiv: 1704.06019, 2017.
![]() |
[25] |
K. Schmidt, Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Company of India, Ltd., Delhi, 1977.
![]() ![]() |
[26] |
T. Tao, Failure of the $L^1$ pointwise and maximal ergodic theorems for the free group, Forum Math. Sigma, 3 (2015), paper no. e27, 19 pp.
doi: 10.1017/fms.2015.28.![]() ![]() ![]() |
[27] |
A. Tserunyan and J. Zomback, A backward ergodic theorem and its forward implications, preprint, arXiv: 2012.10522, 2021.
![]() |