\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pointwise ergodic theorem for locally countable quasi-pmp graphs

The author's research was partially supported by NSF Grant DMS-1501036.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We prove a pointwise ergodic theorem for quasi-probability-measure-preserving (quasi-pmp) locally countable measurable graphs, equivalently, Schreier graphs of quasi-pmp actions of countable groups. For ergodic graphs, the theorem gives an increasing sequence of Borel subgraphs with finite connected components over which the averages of any $ L^1 $ function converges to its expectation. This implies that every (not necessarily pmp) locally countable ergodic Borel graph on a standard probability space contains an ergodic hyperfinite subgraph. A consequence of this is that every ergodic treeable equivalence relation has an ergodic hyperfinite free factor.

    The pmp case of the main theorem was first proven by R. Tucker-Drob using a deep result from probability theory. Our proof is different: it is self-contained and applies more generally to quasi-pmp graphs. Among other things, it involves introducing a graph invariant concerning asymptotic averages of functions and a method of tiling a large part of the space with finite sets with prescribed properties. The non-pmp setting additionally exploits a new quasi-order called visibility to analyze the interplay between the Radon–Nikodym cocycle and the graph structure, providing a sufficient condition for hyperfiniteness.

    Mathematics Subject Classification: Primary: 37A30; Secondary: 03E15, 05C63, 37A20, 37A25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Abért and B. Weiss, Bernoulli actions are weakly contained in any free action, Ergodic Theory Dynam. Systems, 33 (2013), 323-333.  doi: 10.1017/S0143385711000988.
    [2] L. Bowen and A. Nevo, Amenable equivalence relations and the construction of ergodic averages for group actions, J. Anal. Math., 126 (2015), 359-388.  doi: 10.1007/s11854-015-0021-5.
    [3] A. I. Bufetov, Operator ergodic theorems for actions of free semigroups and groups, Funct. Anal. Appl., 34 (2000), 239-251.  doi: 10.1023/A:1004116205980.
    [4] A. ConnesJ. Feldman and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems, 1 (1981), 431-450.  doi: 10.1017/S014338570000136X.
    [5] A. Ditzen, Definable equivalence relations on Polish spaces, Thesis (Ph.D.)–California Institute of Technology, ProQuest LLC, Ann Arbor, MI, 1992.
    [6] R. DoughertyS. Jackson and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc., 341 (1994), 193-225.  doi: 10.1090/S0002-9947-1994-1149121-0.
    [7] Y. N. Dowker, A new proof of the general ergodic theorem, Acta Sci. Math. (Szeged), 12 (1950), 162-166. 
    [8] R. DurrettProbability:Theory and Examples, Cambridge Series in Statistical and Probabilistic Mathematics, 49, 5th edition, Cambridge University Press, Cambridge, 2019.  doi: 10.1017/9781108591034.
    [9] G. Elek, The combinatorial cost, Enseign. Math. (2), 53 (2007), 225-235. 
    [10] J. Feldman, A ratio ergodic theorem for commuting, conservative, invertible transformations with quasi-invariant measure summed over symmetric hypercubes, Ergodic Theory Dynam. Systems, 27 (2007), 1135-1142.  doi: 10.1017/S0143385707000119.
    [11] J. Feldman and C. C. Moore, Ergodic equivalence relations and von Neumann algebras. I, Trans. Amer. Math. Soc., 234 (1977), 289-324.  doi: 10.1090/S0002-9947-1977-0578656-4.
    [12] K. Fujiwara and A. Nevo, Maximal and pointwise ergodic theorems for word-hyperbolic groups, Ergodic Theory Dynam. Systems, 18 (1998), 843-858.  doi: 10.1017/S0143385798117443.
    [13] D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann's problem, Invent. Math., 177 (2009), 533-540.  doi: 10.1007/s00222-009-0187-5.
    [14] J. Grebík and V. Rozhoň, Local Problems on Grids from the Perspective of Distributed Algorithms, Finitary Factors, and Descriptive Combinatorics, preprint, arXiv: 2103.08394, 2021.
    [15] H. HatamiL. Lovász and B. Szegedy, Limits of locally-globally convergent graph sequences, Geom. Funct. Anal., 24 (2014), 269-296.  doi: 10.1007/s00039-014-0258-7.
    [16] M. Hochman, On the ratio ergodic theorem for group actions, J. Lond. Math. Soc. (2), 88 (2013), 465-482.  doi: 10.1112/jlms/jdt022.
    [17] T. Hutchcroft and A. Nachmias, Indistinguishability of trees in uniform spanning forests, Probab. Theory Related Fields, 168 (2017), 113-152.  doi: 10.1007/s00440-016-0707-3.
    [18] S. JacksonA. S. Kechris and A. Louveau, Countable Borel equivalence relations, Journal of Math. Logic, 2 (2002), 1-80.  doi: 10.1142/S0219061302000138.
    [19] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4.
    [20] A. S. Kechris, Global Aspects of Ergodic Group Actions, Mathematical Surveys and Monographs, 160, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/160.
    [21] A. S. Kechris and B. Miller, Topics in Orbit Equivalence, Lecture Notes in Mathematics, 1852, Springer-Verlag, Berlin, 2004. doi: 10.1007/b99421.
    [22] E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259–295. doi: 10.1007/s002220100162.
    [23] B. Miller, The existence of measures of a given cocycle, II: Probability measures, Ergodic Theory Dynam. Systems, 28 (2008), 1615-1633.  doi: 10.1017/S0143385707001125.
    [24] B. D. Miller and A. Tserunyan, Edge sliding and ergodic hyperfinite decomposition, preprint, arXiv: 1704.06019, 2017.
    [25] K. Schmidt, Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Company of India, Ltd., Delhi, 1977.
    [26] T. Tao, Failure of the $L^1$ pointwise and maximal ergodic theorems for the free group, Forum Math. Sigma, 3 (2015), paper no. e27, 19 pp. doi: 10.1017/fms.2015.28.
    [27] A. Tserunyan and J. Zomback, A backward ergodic theorem and its forward implications, preprint, arXiv: 2012.10522, 2021.
  • 加载中
SHARE

Article Metrics

HTML views(2392) PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return