We consider the Lagrange and the Markov dynamical spectra associated with the geodesic flow on surfaces of negative curvature. We show that for a large set of real functions on the unit tangent bundle and typical metrics with negative curvature and finite volume, both the Lagrange and the Markov dynamical spectra have non-empty interiors.
Citation: |
[1] | D. Anosov, Geodesic Flow on Compact Manifolds of Negative Curvature, Proc. Steklov Math. Inst. (1967), translated, Amer. Math. Soc., Providence, 1969. |
[2] | M. Artigiani, L. Marchese and C. Ulcigrai, The Lagrange spectrum of a Veech surface has a Hall ray, Groups Geom. Dyn., 10 (2016), 1287–1337. doi: 10.4171/GGD/384. |
[3] | M. Artigiani, L. Marchese and C. Ulcigrai, Persistent Hall rays for Lagrange spectra at cusps of Riemann surfaces, Ergodic Theory Dynam. Systems, 40 (2020), 2017-2072. doi: 10.1017/etds.2018.143. |
[4] | W. Ballmann, Lectures on Spaces of Nonpositive Curvature, DMV Seminar Band 25, Birkhäuser, 1995. doi: 10.1007/978-3-0348-9240-7. |
[5] | Y. Bugeaud, Nonarchimedean quadratic Lagrange spectra and continued fractions in power series fields, Math. Z., 276 (2014), 985-999. doi: 10.1007/s00209-013-1230-1. |
[6] | C. Camacho and A. L. Neto, Introdução à Teoria das Folheações, Instituto de Matemática Pura e Aplicada, 1977. |
[7] | A. Cerqueira, C. Matheus and C. G. Moreira, Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra, Journal of Modern Dynamics, 12 (2018), 151-174. doi: 10.3934/jmd.2018006. |
[8] | A. Cerqueira, C. G. Moreira and S. Romaña, Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra II, Ergodic Theory Dynam. Systems, 42 (2022), 1898–1907. doi: 10.1017/etds.2021.18. |
[9] | T. W. Cusick and M. E. Flahive, The Markoff and Lagrange Spectra, Math. Surveys and Monographs, 30, Amer. Math. Soc., Providence, 1989. doi: 10.1090/surv/030. |
[10] | P. Eberlein, When is geodesic flow of Anosov type?, J. Diff. Geom., 8 (1973), 437-463. doi: 10.4310/jdg/121443180. |
[11] | P. Eberlein, Lattices in spaces of nonpositive curvature, Ann. of Math., 111 (1980), 435-476. doi: 10.2307/1971104. |
[12] | G. A. Freiman, Diophantine aproximation and the geometry of numbers (Markov problem), Kalinin. Gosudarstv. Univ., Kalinin, 1975. |
[13] | M. Gromov, Manifolds of negative curvature, J. Diff. Geom., 13 (1978), 223-230. doi: 10.4310/jdg/1214434487. |
[14] | A. Haas, Diophantine approximation on hyperbolic Riemann surfaces, Acta Math., 156 (1986), 33-82. doi: 10.1007/BF02399200. |
[15] | A. Haas and C. Series, The Hurwitz constant and Diophantine approximation on Hecke groups, J. London Math. Soc., 34 (1986), 219-234. doi: 10.1112/jlms/s2-34.2.219. |
[16] | M. Hall, On the sum and product of continued fractions, Ann. of Math., 48 (1947), 966-993. doi: 10.2307/1969389. |
[17] | E. Heintze, Mannigfaltigkeiten Negativer Krümmung, Universität Bonn, Mathematisches Institut, Bonn, 2002. |
[18] | S. Hersonsky and F. Paulin, Diophantine approximation for negatively curved manifolds, Math. Z, 241 (2002), 181-226. doi: 10.1007/s002090200412. |
[19] | P. Hubert, L. Marchese and C. Ulcigrai, Lagrange spectra in Teichmüller dynamics via renormalization, Geom. Funct. Anal., 25 (2015), 180-255. doi: 10.1007/s00039-015-0321-z. |
[20] | N. Innami, Differentiability of Busemann functions and total excess, Math. Z., 180 (1982), 235-247. doi: 10.1007/BF01318907. |
[21] | A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995. |
[22] | W. Klingenberg, Riemannian Geometry, Walter de Gruyter, Berlin, 1982. |
[23] | W. Klingenberg and F. Takens, Generic properties of geodesic flows, Math. Ann., 197 (1972), 323-334. doi: 10.1007/BF01428204. |
[24] | D. Lima, C. Matheus, C. G. Moreira and S. Romaña, Classical and Dynamical Markov and Lagrange Spectra Dynamical, Fractal and Arithmetic Aspects, World Scientific, 2021. |
[25] | C. G. Moreira, Geometric properties of the Markov and Lagrange spectra, Ann. of Math., 188 (2018), 145-170. doi: 10.4007/annals.2018.188.1.3. |
[26] | C. G. Moreira and J.-C. Yoccoz, Tangencies homoclines stables pour des ensembles hyperboliques de grande dimension fractale, Ann. Sci. Éc. Norm. Supér., 43 (2010), 1-68. doi: 10.24033/asens.2115. |
[27] | C. G. T. de A. Moreira and J.-C. Yoccoz, Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. of Math., 154 (2001), 45-96. doi: 10.2307/3062110. |
[28] | J. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math., 9 (1956), 673-692. doi: 10.1002/cpa.3160090404. |
[29] | Y. Nasu, On asymptotes in a metric space with non-positive curvature, Tohoku Math. J., 9 (1957), 68-95. doi: 10.2748/tmj/1178244920. |
[30] | J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, 1993. |
[31] | J. Parkkonen and F. Paulin, Prescribing the behavior of geodesic in negative curvature, Geom. Topol., 14 (2010), 277-392. doi: 10.2140/gt.2010.14.277. |
[32] | J. Parkkonen and F. Paulin, On the nonarchimedean quadratic Lagrange spectra, Math Z., 294 (2020), 1065-1084. doi: 10.1007/s00209-019-02300-1. |
[33] | G. P. Paternain, Geodesic Flows, Progress in Mathematics, 180, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-1600-1. |
[34] | S. A. Romaña Ibarra, On the Lagrange and Markov dynamical spectra for Anosov flows in dimesion 3, Qual. Theory Dyn. Syst., 21 (2022), Paper No. 19, 48 pp. doi: 10.1007/s12346-021-00543-0. |
[35] | S. A. Romaña Ibarra and C. G. T. de A. Moreira, On the Lagrange and Markov dynamical spectra, Ergodic Theory Dynam. Systems, 37 (2017), 1570-1591. doi: 10.1017/etds.2015.121. |
[36] | T. A. Schmidt and M. Sheingorn, Riemann surfaces have Hall rays at each cusp, Illinois J. Math., 41 (1997), 378-397. doi: 10.1215/ijm/1255985734. |
[37] | K. Shiohama, T. Shioya and M. Takana, The Geometry of Total Curvature on Complete Open Surfaces, Cambridge Tracts in Mathematics, 159, Cambridge University Press, 2003. doi: 10.1017/CBO9780511543159. |
[38] | D. Sullivan, Differentiable structures on fractal-like sets, determined by intrinsic scaling functions on dual Cantor sets, 15–23, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, 1988. doi: 10.1090/pspum/048/974329. |
Forward coray