\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regularizations of pseudo-automorphisms with positive algebraic entropy

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We study birational automorphisms of threefolds which have positive algebraic entropy. We identify some conditions which imply that such an automorphism is non-regularizable. We show that this criterion applies in the example of a birational automorphism of $  \mathbb{P}^3 $ of positive algebraic entropy constructed by Blanc, thus showing that for a general choice of parameters it is non-regularizable. Additionally, we establish a criterion which proves that the automorphism in this example does not preserve a structure of a fibration over a surface.

    Mathematics Subject Classification: Primary: 14J50; Secondary: 14E07, 32H50, 37F10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] E. BedfordS. Cantat and K. Kim, Pseudo-automorphisms with no invariant foliation, J. Mod. Dyn., 8 (2014), 221-250.  doi: 10.3934/jmd.2014.8.221.
    [2] E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Linear fractional recurrences, J. Geom. Anal., 19 (2009), 553-583.  doi: 10.1007/s12220-009-9077-8.
    [3] E. Bedford and K. Kim, Dynamics of (pseudo) automorphisms of 3-space: Periodicity versus positive entropy, Publ. Mat., 58 (2014), 65-119.  doi: 10.5565/PUBLMAT_58114_04.
    [4] M. P. Bellon and C.-M. Viallet, Algebraic entropy, Comm. Math. Phys., 204 (1999), 425-437.  doi: 10.1007/s002200050652.
    [5] J. Blanc, On the inertia group of elliptic curves in the Cremona group of the plane, Michigan Math. J., 56 (2008), 315-330.  doi: 10.1307/mmj/1224783516.
    [6] J. Blanc, Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces, Indiana Univ. Math. J., 62 (2013), 1143-1164.  doi: 10.1512/iumj.2013.62.5040.
    [7] J. Blanc and S. Cantat, Dynamical degrees of birational transformations of projective surfaces, J. Amer. Math. Soc., 29 (2016), 415-471.  doi: 10.1090/jams831.
    [8] S. BoucksomJ.-P. DemaillyM. Păun and T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., 22 (2013), 201-248.  doi: 10.1090/S1056-3911-2012-00574-8.
    [9] S. CantatJ. Déserti and J. Xie, Three chapters on Cremona groups, Indiana Univ. Math. J., 70 (2021), 2011-2064.  doi: 10.1512/iumj.2021.70.9153.
    [10] N.-B. Dang and C. Favre, Spectral interpretations of dynamical degrees and applications, Ann. of Math., 194 (2021), 299-359.  doi: 10.4007/annals.2021.194.1.5.
    [11] J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math., 123 (2001), 1135-1169.  doi: 10.1353/ajm.2001.0038.
    [12] T.-C. Dinh and V.-A. Nguyên, Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv., 86 (2011), 817-840.  doi: 10.4171/CMH/241.
    [13] T.-C. Dinh and N. Sibony, Une borne supérieure pour l'entropie topologique d'une application rationnelle, Ann. of Math. (2), 161 (2005), 1637-1644.  doi: 10.4007/annals.2005.161.1637.
    [14] I. Dolgachev and D. Ortland, Point sets in projective spaces and theta functions, Astérisque, 165 (1988), 210 pp.
    [15] W. Fulton, Intersection Theory, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 2, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-1-4612-1700-8.
    [16] C. D. Hacon and J. McKernan, Flips and flops, in Proceedings of the International Congress of Mathematicians. Volume II, 513–539, Hindustan Book Agency, New Delhi, 2010.
    [17] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, no. 52, Springer-Verlag, New York-Heidelberg, 1977.
    [18] J. Kollár, Lectures on Resolution of Singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007.
    [19] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. doi: 10.1017/CBO9780511662560.
    [20] J. Lesieutre, Some constraints of positive entropy automorphisms of smooth threefolds, Ann. Sci. Éc. Norm. Supér. (4), 51 (2018), 1507–1547. doi: 10.24033/asens.2380.
    [21] F. Lo Bianco, On the cohomological action of automorphisms of compact Kähler threefolds, Bull. Soc. Math. France, 147 (2019), 469-514. 
    [22] K. Oguiso and T. T. Truong, Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy, J. Math. Sci. Univ. Tokyo, 22 (2015), 361-385. 
    [23] Yu. Prokhorov and C. Shramov, Jordan property for groups of birational selfmaps, Compos. Math., 150 (2014), 2054-2072.  doi: 10.1112/S0010437X14007581.
    [24] T. T. Truong, The simplicity of the first spectral radius of a meromorphic map, Michigan Math. J., 63 (2014), 623-633.  doi: 10.1307/mmj/1409932635.
    [25] T. T. Truong, Relative dynamical degrees of correspondences over a field of arbitrary characteristic, J. Reine Angew. Math., 758 (2020), 139-182.  doi: 10.1515/crelle-2017-0052.
    [26] A. Weil, On algebraic groups of transformations, Amer. J. Math., 77 (1955), 355-391.  doi: 10.2307/2372535.
  • 加载中
SHARE

Article Metrics

HTML views(1800) PDF downloads(22) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return