We study birational automorphisms of threefolds which have positive algebraic entropy. We identify some conditions which imply that such an automorphism is non-regularizable. We show that this criterion applies in the example of a birational automorphism of $ \mathbb{P}^3 $ of positive algebraic entropy constructed by Blanc, thus showing that for a general choice of parameters it is non-regularizable. Additionally, we establish a criterion which proves that the automorphism in this example does not preserve a structure of a fibration over a surface.
Citation: |
[1] | E. Bedford, S. Cantat and K. Kim, Pseudo-automorphisms with no invariant foliation, J. Mod. Dyn., 8 (2014), 221-250. doi: 10.3934/jmd.2014.8.221. |
[2] | E. Bedford and K. Kim, Dynamics of rational surface automorphisms: Linear fractional recurrences, J. Geom. Anal., 19 (2009), 553-583. doi: 10.1007/s12220-009-9077-8. |
[3] | E. Bedford and K. Kim, Dynamics of (pseudo) automorphisms of 3-space: Periodicity versus positive entropy, Publ. Mat., 58 (2014), 65-119. doi: 10.5565/PUBLMAT_58114_04. |
[4] | M. P. Bellon and C.-M. Viallet, Algebraic entropy, Comm. Math. Phys., 204 (1999), 425-437. doi: 10.1007/s002200050652. |
[5] | J. Blanc, On the inertia group of elliptic curves in the Cremona group of the plane, Michigan Math. J., 56 (2008), 315-330. doi: 10.1307/mmj/1224783516. |
[6] | J. Blanc, Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces, Indiana Univ. Math. J., 62 (2013), 1143-1164. doi: 10.1512/iumj.2013.62.5040. |
[7] | J. Blanc and S. Cantat, Dynamical degrees of birational transformations of projective surfaces, J. Amer. Math. Soc., 29 (2016), 415-471. doi: 10.1090/jams831. |
[8] | S. Boucksom, J.-P. Demailly, M. Păun and T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., 22 (2013), 201-248. doi: 10.1090/S1056-3911-2012-00574-8. |
[9] | S. Cantat, J. Déserti and J. Xie, Three chapters on Cremona groups, Indiana Univ. Math. J., 70 (2021), 2011-2064. doi: 10.1512/iumj.2021.70.9153. |
[10] | N.-B. Dang and C. Favre, Spectral interpretations of dynamical degrees and applications, Ann. of Math., 194 (2021), 299-359. doi: 10.4007/annals.2021.194.1.5. |
[11] | J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math., 123 (2001), 1135-1169. doi: 10.1353/ajm.2001.0038. |
[12] | T.-C. Dinh and V.-A. Nguyên, Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv., 86 (2011), 817-840. doi: 10.4171/CMH/241. |
[13] | T.-C. Dinh and N. Sibony, Une borne supérieure pour l'entropie topologique d'une application rationnelle, Ann. of Math. (2), 161 (2005), 1637-1644. doi: 10.4007/annals.2005.161.1637. |
[14] | I. Dolgachev and D. Ortland, Point sets in projective spaces and theta functions, Astérisque, 165 (1988), 210 pp. |
[15] | W. Fulton, Intersection Theory, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 2, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-1-4612-1700-8. |
[16] | C. D. Hacon and J. McKernan, Flips and flops, in Proceedings of the International Congress of Mathematicians. Volume II, 513–539, Hindustan Book Agency, New Delhi, 2010. |
[17] | R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, no. 52, Springer-Verlag, New York-Heidelberg, 1977. |
[18] | J. Kollár, Lectures on Resolution of Singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007. |
[19] | J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. doi: 10.1017/CBO9780511662560. |
[20] | J. Lesieutre, Some constraints of positive entropy automorphisms of smooth threefolds, Ann. Sci. Éc. Norm. Supér. (4), 51 (2018), 1507–1547. doi: 10.24033/asens.2380. |
[21] | F. Lo Bianco, On the cohomological action of automorphisms of compact Kähler threefolds, Bull. Soc. Math. France, 147 (2019), 469-514. |
[22] | K. Oguiso and T. T. Truong, Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy, J. Math. Sci. Univ. Tokyo, 22 (2015), 361-385. |
[23] | Yu. Prokhorov and C. Shramov, Jordan property for groups of birational selfmaps, Compos. Math., 150 (2014), 2054-2072. doi: 10.1112/S0010437X14007581. |
[24] | T. T. Truong, The simplicity of the first spectral radius of a meromorphic map, Michigan Math. J., 63 (2014), 623-633. doi: 10.1307/mmj/1409932635. |
[25] | T. T. Truong, Relative dynamical degrees of correspondences over a field of arbitrary characteristic, J. Reine Angew. Math., 758 (2020), 139-182. doi: 10.1515/crelle-2017-0052. |
[26] | A. Weil, On algebraic groups of transformations, Amer. J. Math., 77 (1955), 355-391. doi: 10.2307/2372535. |