We establish an extension of the Hopf–Tsuji–Sullivan dichotomy to any Zariski dense discrete subgroup of a semisimple real algebraic group $ G $. We then apply this dichotomy to Anosov subgroups of $ G $, which surprisingly presents a different phenomenon depending on the rank of the ambient group $ G $.
Citation: |
[1] | J. Aaronson, Rational ergodicity and a metric invariant under Markov shifts, Israel J. Math., 27 (1977), 93-123. doi: 10.1007/BF02761661. |
[2] | J. Aaronson and D. Sullivan, Rational ergodicity of geodesic flows, Ergodic Theory Dynam. Syst., 4 (1984), 165-178. doi: 10.1017/S0143385700002364. |
[3] | P. Albuquerque, Patterson-Sullivan theory in higher rank symmetric spaces, Geom. Funct. Anal., 9 (1999), 1–28. doi: 10.1007/s000390050079. |
[4] | Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal., 7 (1997), 1-47. doi: 10.1007/PL00001613. |
[5] | J. Bochi, R. Potrie and A. Sambarino, Anosov representations and dominated splittings, J. Eur. Math. Soc., 21 (2019), 3343-3414. doi: 10.4171/JEMS/905. |
[6] | M. Burger, Intersection, the Manhattan curve, and Patterson–Sullivan theory in rank 2, Int. Math. Res. Not., 1993,217–225. doi: 10.1155/S1073792893000236. |
[7] | M. Burger and S. Mozes, CAT (-1) spaces, Divergence groups and their commensurators, Journal of the AMS, 9 (1996), 57-93. doi: 10.1090/S0894-0347-96-00196-8. |
[8] | L. Carvajales, Growth of quadratic forms under Anosov subgroups, Int. Math. Res. Not., 2023,785–854. doi: 10.1093/imrn/rnab181. |
[9] | M. Chow and P. Sarkar, Local mixing of one-parameter diagonal flows on Anosov homogeneous spaces, Int. Math. Res. Not., published online first, 2023. doi: 10.1093/imrn/rnac342. |
[10] | P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996. |
[11] | S. Edwards, M. Lee and H. Oh, Anosov groups: Local mixing, counting, and equidistribution, preprint, arXiv: 2003.14277, 2020, to appear in Geometry & Topology. |
[12] | O. Guichard and A. Wienhard, Anosov representations: Domains of discontinuity and applications, Invent. Math., 190 (2012), 357-438. doi: 10.1007/s00222-012-0382-7. |
[13] | Y. Guivarc'h and A. Raugi, Actions of large semigroups and random walks on isometric extensions of boundaries, Ann. Sci. École Norm. Sup., 40 (2007), 209-249. doi: 10.1016/j.ansens.2007.01.003. |
[14] | E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc., 77 (1971), 863-877. doi: 10.1090/S0002-9904-1971-12799-4. |
[15] | I. Kim, Length spectrum in rank one symmetric space is not arithmetic, Proc. Amer. Math. Soc., 134 (2006), 3691-3696. doi: 10.1090/S0002-9939-06-08373-0. |
[16] | U. Krengel, Ergodic Theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. doi: 10.1515/9783110844641. |
[17] | F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math., 165 (2006), 51-114. doi: 10.1007/s00222-005-0487-3. |
[18] | O. Landesberg, M. Lee, E. Lindenstrauss and H. Oh, Horospherical invariant measures and a rank dichotomy for Anosov groups, J. Mod. Dyn., 19 (2023), 331-362. doi: 10.3934/jmd.2023009. |
[19] | M. Lee and H. Oh, Invariant measures for horospherical actions and Anosov groups, preprint, arXiv: 2008.05296, 2020, to appear in Int. Math. Res. Not. doi: 10.1093/imrn/rnac262. |
[20] | M. Lee and H. Oh, Ergodic decompositions of geometric measures on Anosov homogeneous spaces, preprint, arXiv: 2010.11337, 2020, to appear in Israel J. Math. |
[21] | P. J. Nicholls, The Ergodic Theory of Discrete Groups, London Math. Soc. Lecture Notes, vol. 143, Cambridge Univ. Press, Cambridge and New York, 1989. doi: 10.1017/CBO9780511600678. |
[22] | R. Potrie and A. Sambarino, Eigenvalues and entropy of a Hitchin representation, Invent. Math., 209 (2017), 885-925. doi: 10.1007/s00222-017-0721-9. |
[23] | J.-F. Quint, Divergence exponentielle des sous-groupes discrets en rang supérieur, Comment. Math. Helv., 77 (2002), 563-608. doi: 10.1007/s00014-002-8352-0. |
[24] | J.-F. Quint, Mesures de Patterson–Sullivan en rang supérieur, Geom. Funct. Anal., 12 (2002), 776-809. doi: 10.1007/s00039-002-8266-4. |
[25] | J.-F. Quint, L'indicateur de croissance des groupes de Schottky, Ergodic Theory Dynam. Syst., 23 (2003), 249-272. doi: 10.1017/S0143385702001268. |
[26] | T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr., 95 (2003), vi+96 pp. doi: 10.24033/msmf.408. |
[27] | A. Sambarino, The orbital counting problem for hyperconvex representations, Ann. Inst. Fourier (Grenoble), 65 (2015), 1755-1797. doi: 10.5802/aif.2973. |
[28] | A. Sambarino, Quantitative properties of convex representations, Comment. Math. Helv., 89 (2014), 443-488. doi: 10.4171/CMH/324. |
[29] | A. Sambarino, Hyperconvex representations and exponential growth, Ergodic Theory Dynam. Syst., 34 (2014), 986-1010. doi: 10.1017/etds.2012.170. |
[30] | A. Sambarino, A report on an ergodic dichotomy, preprint, arXiv: 2202.02213, 2022. |
[31] | D. Sullivan, The density at infinity of a discrete subgroup of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math, 50 (1979), 171-202. |
[32] | M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co. Ltd., Tokyo, 1959. |
[33] | D. Winter, Mixing of frame flow for rank one locally symmetric spaces and measure classification, Israel J. Math., 210 (2015), 467-507. doi: 10.1007/s11856-015-1258-5. |