An $ S $-adic system is a symbolic dynamical system generated by iterating an infinite sequence of substitutions or morphisms, called a directive sequence. A finitary $ S $-adic dynamical system is one where the directive sequence consists of morphisms selected from a finite set. We study eigenvalues and coboundaries for finitary recognizable $ S $-adic dynamical systems, i.e., those where points can be uniquely desubstituted using the given sequence of morphisms. To do this we identify the notions of straightness and essential words, and use them to define a coboundary, inspired by Host's formalism, which allows us to express necessary and sufficient conditions that a complex number must satisfy in order to be a continuous or measurable eigenvalue. We then apply our results to finitary directive sequences of substitutions of constant length, and show how to create constant-length $ S $-adic shifts with non-trivial coboundaries. We show that in this case all continuous eigenvalues are rational and we give a complete description of the rationals that can be an eigenvalue, indicating how this leads to a Cobham-style result for these systems.
Citation: |
Figure 2. Part of the natural Bratteli diagram for a strongly straight directive sequence, where the letters $ a $ and $ b $ determine the same right-infinite limit word. Dashed edges correspond to minimal edges from $ a $ or $ b $ which lead directly to the limit word $ {\boldsymbol a} = {\boldsymbol b} $. The solid edges depict the limit word $ {\boldsymbol a} $
[1] |
S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel, On the Pisot substitution conjecture, in Mathematics of Aperiodic Order, 33–72, Progress in Mathematics, vol. 309, Birkhäuser, Basel, 2015
doi: 10.1007/978-3-0348-0903-0_2.![]() ![]() ![]() |
[2] |
J.-P. Allouche, N. Rampersad and J. Shallit, Periodicity, repetitions, and orbits of an automatic sequence, Theoret. Comput. Sci., 410 (2009), 2795-2803.
doi: 10.1016/j.tcs.2009.02.006.![]() ![]() ![]() |
[3] |
J.-P. Allouche, J. Shallit and R. Yassawi, How to prove that a sequence is not automatic, Expo. Math., 40 (2022), 1-22.
doi: 10.1016/j.exmath.2021.08.001.![]() ![]() ![]() |
[4] |
F. Arbulú, F. Durand and B. Espinoza, The Jacobs-Keane theorem from the $\mathcal{S} $-adic viewpoint, Discrete Contin. Dyn. Syst., 44 (2024), 3077-3108.
doi: 10.3934/dcds.2024052.![]() ![]() ![]() |
[5] |
P. Arnoux, M. Mizutani and T. Sellami, Random product of substitutions with the same incidence matrix, Theoret. Comput. Sci., 543 (2014), 68-78.
doi: 10.1016/j.tcs.2014.06.002.![]() ![]() ![]() |
[6] |
P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexité $2n+1$, Bull. Soc. Math. France, 119 (1991), 199-215.
doi: 10.24033/bsmf.2164.![]() ![]() ![]() |
[7] |
N. Aubrun and M. Sablik, Multidimensional effective S-adic subshifts are sofic, Unif. Distrib. Theory, 9 (2014), 7-29.
![]() ![]() |
[8] |
J.-B. Aujogue, M. Barge, J. Kellendonk and D. Lenz, Equicontinuous factors, proximality and Ellis semigroup for Delone sets, in Mathematics of Aperiodic Order, 137–194, Progress in Mathematics, vol. 309, Birkhäuser, Basel, 2015.
doi: 10.1007/978-3-0348-0903-0_5.![]() ![]() ![]() |
[9] |
M. Baake, T. Spindeler and N. Strungaru, Diffraction of compatible random substitutions in one dimension, Indag. Math. (N.S.), 29 (2018), 1031-1071.
doi: 10.1016/j.indag.2018.05.008.![]() ![]() ![]() |
[10] |
M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions, Amer. J. Math., 128 (2006), 1219-1282.
doi: 10.1353/ajm.2006.0037.![]() ![]() ![]() |
[11] |
M.-P. Béal, V. Berthé, D. Perrin and A. Restivo, A note on one-sided recognizable morphisms, preprint, arXiv: 2204.03892, 2022.
![]() |
[12] |
M.-P. Béal, D. Perrin and A. Restivo, Recognizability of morphisms, Ergodic Theory Dynam. Systems, 43 (2023), 3578-3602.
doi: 10.1017/etds.2022.109.![]() ![]() ![]() |
[13] |
V. Berthé and P. Cecchi Bernales, Balancedness and coboundaries in symbolic systems, Theoret. Comput. Sci., 777 (2019), 93-110.
doi: 10.1016/j.tcs.2018.09.012.![]() ![]() ![]() |
[14] |
V. Berthé, P. Cecchi Bernales, F. Durand, J. Leroy, D. Perrin and S. Petite, On the dimension group of unimodular $\mathcal{S}$-adic subshifts, Monatsh. Math., 194 (2021), 687-717.
doi: 10.1007/s00605-020-01488-3.![]() ![]() ![]() |
[15] |
V. Berthé and V. Delecroix, Beyond substitutive dynamical systems: $S$-adic expansions, RIMS Lecture note 'Kôkyûroku Bessatsu', B46 (2014), 81-123.
![]() ![]() |
[16] |
V. Berthé and M. Rigo (eds.), Combinatorics, Automata and Number Theory, Encyclopedia Math. Appl., vol. 135, Cambridge University Press, Cambridge, 2010.
![]() ![]() |
[17] |
V. Berthé, W. Steiner and J. M. Thuswaldner, Geometry, dynamics, and arithmetic of $S$-adic shifts, Ann. Inst. Fourier (Grenoble), 69 (2019), 1347-1409.
doi: 10.5802/aif.3273.![]() ![]() ![]() |
[18] |
V. Berthé, W. Steiner and J. M. Thuswaldner, Multidimensional continued fractions and symbolic codings of toral translations, J. Eur. Math. Soc. (JEMS), 25 (2023), 4997-5057.
![]() ![]() |
[19] |
V. Berthé, W. Steiner, J. M. Thuswaldner and R. Yassawi, Recognizability for sequences of morphisms, Ergodic Theory Dynam. Systems, 39 (2019), 2896-2931.
doi: 10.1017/etds.2017.144.![]() ![]() ![]() |
[20] |
S. Bezuglyi, J. Kwiatkowski and K. Medynets, Aperiodic substitution systems and their Bratteli diagrams, Ergodic Theory Dynam. Systems, 29 (2009), 37-72.
doi: 10.1017/S0143385708000230.![]() ![]() ![]() |
[21] |
S. Bezuglyi, J. Kwiatkowski, K. Medynets and B. Solomyak, Finite rank Bratteli diagrams: Structure of invariant measures, Trans. Amer. Math. Soc., 365 (2013), 2637-2679.
doi: 10.1090/S0002-9947-2012-05744-8.![]() ![]() ![]() |
[22] |
F. Blanchard, F. Durand and A. Maass, Constant-length substitutions and countable scrambled sets, Nonlinearity, 17 (2004), 817-833.
doi: 10.1088/0951-7715/17/3/005.![]() ![]() ![]() |
[23] |
M. D. Boshernitzan, A condition for unique ergodicity of minimal symbolic flows, Ergodic Theory Dynam. Systems, 12 (1992), 425-428.
doi: 10.1017/S0143385700006866.![]() ![]() ![]() |
[24] |
X. Bressaud, F. Durand and A Maass, Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems, J. London Math. Soc., 72 (2005), 799-816.
doi: 10.1112/S0024610705006800.![]() ![]() ![]() |
[25] |
X. Bressaud, F. Durand and A. Maass, On the eigenvalues of finite rank Bratteli-Vershik dynamical systems, Ergodic Theory Dynam. Systems, 30 (2010), 639-664.
doi: 10.1017/S0143385709000236.![]() ![]() ![]() |
[26] |
A. I. Bufetov and B. Solomyak, A spectral cocycle for substitution systems and translation flows, J. Anal. Math., 141 (2020), 165-205.
doi: 10.1007/s11854-020-0127-2.![]() ![]() ![]() |
[27] |
Á. Bustos-Gajardo, N. Mañibo and R. Yassawi, Torsion-free $S$-adic shifts and their spectrum, Studia Math., 272 (2023), 159-198.
doi: 10.4064/sm221028-6-5.![]() ![]() ![]() |
[28] |
J. T. Campbell, Spectral analysis of the ergodic Hilbert transform, Indiana Univ. Math. J., 35 (1986), 379-390.
doi: 10.1512/iumj.1986.35.35023.![]() ![]() ![]() |
[29] |
V. Canterini and A. Siegel, Automate des préfixes-suffixes associé à une substitution primitive, J. Théor. Nombres Bordeaux, 13 (2001), 353-369.
doi: 10.5802/jtnb.327.![]() ![]() ![]() |
[30] |
J. Cassaigne, S. Ferenczi and A. Messaoudi, Weak mixing and eigenvalues for Arnoux-Rauzy sequences, Ann. Inst. Fourier (Grenoble), 58 (2008), 1983-2005.
doi: 10.5802/aif.2403.![]() ![]() ![]() |
[31] |
J. Cassaigne, S. Labbé and J. Leroy, A set of sequences of complexity $2n+1$, in Combinatorics on Words, 144–156, Lecture Notes in Comput. Sci., vol. 10432, Springer, Cham, 2017.
doi: 10.1007/978-3-319-66396-8_14.![]() ![]() ![]() |
[32] |
I. P. Cornfeld, S. V. Fomin and Ya. G. Sinaǐ, Ergodic Theory, Grundlehren Math. Wiss., vol. 245, Springer-Verlag, New York, 1982.
![]() ![]() |
[33] |
M. I. Cortez, F. Durand, B. Host and A. Maass, Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems, J. London Math. Soc. (2), 67 (2003), 790-804.
doi: 10.1112/S0024610703004320.![]() ![]() ![]() |
[34] |
M. I. Cortez, F. Durand and S. Petite, Eigenvalues and strong orbit equivalence, Ergodic Theory Dynam. Systems, 36 (2016), 2419-2440.
doi: 10.1017/etds.2015.26.![]() ![]() ![]() |
[35] |
M. I. Cortez, F. Durand and S. Petite, Almost everywhere balanced sequences of complexity $2n+1$, Mosc. J. Comb. Number Theory, 11 (2022), 287-333.
doi: 10.2140/moscow.2022.11.287.![]() ![]() ![]() |
[36] |
M. I. Cortez, F. Durand and S. Petite, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc., 353 (2001), 5121-5144.
doi: 10.1090/S0002-9947-01-02797-0.![]() ![]() ![]() |
[37] |
F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41 (1977/78), 221-239.
doi: 10.1007/BF00534241.![]() ![]() ![]() |
[38] |
V. Delecroix, T. Hejda and W. Steiner, Balancedness of Arnoux-Rauzy and Brun words, in Combinatorics on Words, 119–131, Lecture Notes in Comput. Sci., vol. 8079, Springer, Heildelberg, 2013.
doi: 10.1007/978-3-642-40579-2_14.![]() ![]() ![]() |
[39] |
J. L. Doob, Stochastic Processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953.
![]() ![]() |
[40] |
T. Downarowicz, Survey of odometers and Toeplitz flows, in Algebraic and Topological Dynamics, 7–37, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005.
doi: 10.1090/conm/385/07188.![]() ![]() ![]() |
[41] |
T. Downarowicz and Y. Lacroix, A non-regular Toeplitz flow with preset pure point spectrum, Studia Math., 120 (1996), 235-246.
![]() ![]() |
[42] |
F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Systems, 20 (2000), 1061-1078.
doi: 10.1017/S0143385700000584.![]() ![]() ![]() |
[43] |
F. Durand, A. Frank and A. Maass, Eigenvalues of Toeplitz minimal systems of finite topological rank, Ergodic Theory Dynam. Systems, 35 (2015), 2499-2528.
doi: 10.1017/etds.2014.45.![]() ![]() ![]() |
[44] |
F. Durand, A. Frank and A. Maass, Eigenvalues of minimal Cantor systems, J. Eur. Math. Soc. (JEMS), 21 (2019), 727-775.
doi: 10.4171/jems/849.![]() ![]() ![]() |
[45] |
F. Durand and V. Goyheneche, Decidability, arithmetic subsequences and eigenvalues of morphic subshifts, Bull. Belg. Math. Soc. Simon Stevin, 26 (2019), 591-618.
doi: 10.36045/bbms/1576206359.![]() ![]() ![]() |
[46] |
F. Durand, B. Host and C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems, 19 (1999), 953-993.
doi: 10.1017/S0143385799133947.![]() ![]() ![]() |
[47] |
F. Durand, B. Host and C. Skau, Corrigendum and addendum to: "Linearly recurrent subshifts have a finite number of non-periodic subshift factors" [Ergodic Theory Dynam. Systems, 20 (2000), 1061–1078], Ergodic Theory Dynam. Systems, 23 (2003), 663–669.
![]() ![]() |
[48] |
F. Durand, B. Host and C. Skau, Cobham's theorem for substitutions, J. Eur. Math. Soc. (JEMS), 13 (2011), 1799-1814.
doi: 10.4171/jems/294.![]() ![]() ![]() |
[49] |
B. Espinoza, Symbolic factors of ${\mathscr S}$-adic subshifts of finite alphabet rank, Ergodic Theory Dynam. Systems, 43 (2023), 1511-1547.
doi: 10.1017/etds.2022.21.![]() ![]() ![]() |
[50] |
S. Ferenczi, Systems of finite rank, Colloq. Math., 73 (1997), 35-65.
doi: 10.4064/cm-73-1-35-65.![]() ![]() ![]() |
[51] |
S. Ferenczi, C. Mauduit and A. Nogueira, Substitution dynamical systems: Algebraic characterization of eigenvalues, Ann. Sci. École Norm. Sup. (4), 29 (1996), 519-533.
doi: 10.24033/asens.1746.![]() ![]() ![]() |
[52] |
N. P. Frank and L. Sadun, Fusion: A general framework for hierarchical tilings of $\Bbb{R}^d$, Geom. Dedicata, 171 (2014), 149-186.
doi: 10.1007/s10711-013-9893-7.![]() ![]() ![]() |
[53] |
T. Giordano, D. Handelman and M. Hosseini, Orbit equivalence of Cantor minimal systems and their continuous spectra, Math. Z., 289 (2018), 1199-1218.
doi: 10.1007/s00209-017-1994-9.![]() ![]() ![]() |
[54] |
R. Gjerde and Ø. Johansen, Bratteli-Vershik models for Cantor minimal systems associated to interval exchange transformations, Mathematica Scandinavica, 90 (2002), 87-100.
![]() ![]() |
[55] |
N. Golestani and M. Hosseini, On topological rank of factors of Cantor minimal systems, Ergodic Theory Dynam. Systems, 42 (2022), 2866-2889.
doi: 10.1017/etds.2021.62.![]() ![]() ![]() |
[56] |
R. H. Herman, I. F. Putnam and C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math., 3 (1992), 827-864.
doi: 10.1142/S0129167X92000382.![]() ![]() ![]() |
[57] |
B. Host, Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dynam. Systems, 6 (1986), 529-540.
doi: 10.1017/S0143385700003679.![]() ![]() ![]() |
[58] |
T. Kamae, A topological invariant of substitution minimal sets, J. Math. Soc. Japan, 24 (1972), 285-306.
doi: 10.2969/jmsj/02420285.![]() ![]() ![]() |
[59] |
J. Karhumäki, J. Maňuch and W. Plandowski, A defect theorem for bi-infinite words, Theoret. Comput. Sci., 292 (2003), 237-243.
doi: 10.1016/S0304-3975(01)00225-0.![]() ![]() ![]() |
[60] |
A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspehi Mat. Nauk, 22 (1967), 81-106.
![]() ![]() |
[61] |
M. K. Mentzen, Automorphisms with finite exact uniform rank, Studia Math., 100 (1991), 13-24.
doi: 10.4064/sm-100-1-13-24.![]() ![]() ![]() |
[62] |
B. Mossé, Puissances de mots et reconnaissabilité des points fixes d'une substitution, Theoret. Comput. Sci., 99 (1992), 327-334.
doi: 10.1016/0304-3975(92)90357-L.![]() ![]() ![]() |
[63] |
B. Mossé, Reconnaissabilité des substitutions et complexité des suites automatiques, Bull. Soc. Math. France, 124 (1996), 329-346.
doi: 10.24033/bsmf.2283.![]() ![]() ![]() |
[64] |
M. G. Nadkarni, Spectral Theory of Dynamical Systems, Texts and Readings in Mathematics, vol. 15, Hindustan Book Agency, New Delhi, 2011.
![]() ![]() |
[65] |
K. Petersen, Ergodic Theory, Cambridge Stud. Adv. Math., vol. 2, Cambridge University Press, Cambridge, 1983.
![]() ![]() |
[66] |
N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Math., vol. 1794, Springer-Verlag, Berlin, 2002.
![]() ![]() |
[67] |
N. Pytheas Fogg and C. Noûs, Symbolic coding of linear complexity for generic translations on the torus, using continued fractions, J. Mod. Dyn., 20 (2024), 527-596.
doi: 10.3934/jmd.2024015.![]() ![]() ![]() |
[68] |
M. Queffélec, Substitution Dynamical Systems–Spectral Analysis, second ed., Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 2010.
![]() ![]() |
[69] |
D. Rust, Periodic points in random substitution subshifts, Monatsh. Math., 193 (2020), 683-704.
doi: 10.1007/s00605-020-01458-9.![]() ![]() ![]() |
[70] |
T. Shimomura, Bratteli-Vershik models and graph covering models, Adv. Math., 367 (2020), 107127, 54pp.
doi: 10.1016/j.aim.2020.107127.![]() ![]() ![]() |
[71] |
B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, 17 (1997), 695-738.
doi: 10.1017/S0143385797084988.![]() ![]() ![]() |
[72] |
B. Sz.-Nagy and C. Foiaş, Sur les contractions de l'espace de Hilbert. Ⅲ, Acta Sci. Math. (Szeged), 19 (1958), 26-45.
![]() ![]() |
[73] |
B. Solomyak, Eigenfunctions for substitution tiling systems, in Probability and Number Theory–Kanazawa 2005, 433–454, Adv. Stud. Pure Math., vol. 49, Math. Soc. Japan, Tokyo, 2007.
doi: 10.2969/aspm/04910433.![]() ![]() ![]() |
[74] |
P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math., vol. 79, Springer-Verlag, New York-Berlin, 1982.
![]() ![]() |
[75] |
S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete, 67 (1984), 95-107.
doi: 10.1007/BF00534085.![]() ![]() ![]() |
In this example, we construct
Part of the natural Bratteli diagram for a strongly straight directive sequence, where the letters