March  2008, 1(1): 139-170. doi: 10.3934/krm.2008.1.139

Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case

1. 

Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 16 route de Gray, Besançon, 25030 Cedex

2. 

INRIA Project Team SIMPAF & Laboratoire Paul Painlevé, UMR CNRS 8524, INRIA Research Centre Futurs, Park Plazza 40, avenue Halley, 59650 Villeneuve d'Ascq, France

Received  November 2007 Revised  November 2007 Published  February 2008

We study the asymptotic regime for the relativistic Vlasov-Maxwell-Fokker-Planck system which corresponds to a mean free path small compared to the Debye length, chosen as an observation length scale, combined to a large thermal velocity assumption. We are led to a convection-diffusion equation, where the convection velocity is obtained by solving a Poisson equation. The analysis is performed in the one and one half dimensional case and the proof combines dissipation mechanisms and finite speed of propagation properties.
Citation: Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic and Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139
[1]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic and Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[2]

Mingying Zhong. Diffusion limit and the optimal convergence rate of the Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2022, 15 (1) : 1-26. doi: 10.3934/krm.2021041

[3]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure and Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[4]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[5]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[6]

José A. Carrillo, Renjun Duan, Ayman Moussa. Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. Kinetic and Related Models, 2011, 4 (1) : 227-258. doi: 10.3934/krm.2011.4.227

[7]

Maxime Hauray, Samir Salem. Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D. Kinetic and Related Models, 2019, 12 (2) : 269-302. doi: 10.3934/krm.2019012

[8]

Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic and Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041

[9]

José A. Carrillo, Young-Pil Choi, Yingping Peng. Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system. Kinetic and Related Models, 2022, 15 (3) : 355-384. doi: 10.3934/krm.2021052

[10]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[11]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[12]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[13]

Abdessatar Khelifi, Siwar Saidani. Asymptotic behavior of eigenvalues of the Maxwell system in the presence of small changes in the interface of an inclusion. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022080

[14]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[15]

Guillaume Bal, Benjamin Palacios. Pencil-beam approximation of fractional Fokker-Planck. Kinetic and Related Models, 2021, 14 (5) : 767-817. doi: 10.3934/krm.2021024

[16]

Mohammad Asadzadeh, Piotr Kowalczyk, Christoffer Standar. On hp-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system. Kinetic and Related Models, 2019, 12 (1) : 105-131. doi: 10.3934/krm.2019005

[17]

Sergiu Klainerman, Gigliola Staffilani. A new approach to study the Vlasov-Maxwell system. Communications on Pure and Applied Analysis, 2002, 1 (1) : 103-125. doi: 10.3934/cpaa.2002.1.103

[18]

Jonathan Ben-Artzi, Stephen Pankavich, Junyong Zhang. A toy model for the relativistic Vlasov-Maxwell system. Kinetic and Related Models, 2022, 15 (3) : 341-354. doi: 10.3934/krm.2021053

[19]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic and Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[20]

Maxime Herda, Luis Miguel Rodrigues. Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations. Kinetic and Related Models, 2019, 12 (3) : 593-636. doi: 10.3934/krm.2019024

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]