June  2008, 1(2): 249-278. doi: 10.3934/krm.2008.1.249

Towards a mathematical theory of complex socio-economical systems by functional subsystems representation

1. 

IMT -Institute for Advanced Studies Lucca, Piazza San Ponziano 6, 55100 Lucca, Italy

2. 

Department of Mathematics, Politecnico Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy

3. 

Luiss Guido Carli, Viale Pola 12, 00198 Roma, Italy

Received  February 2008 Revised  February 2008 Published  May 2008

This paper deals with the development of a mathematical theory for complex socio-economical systems. The approach is based on the methods of the mathematical kinetic theory for active particles, which describes the evolution of large systems of interacting entities which are carriers of specific functions, in our case economical activities. The method is implemented with the concept of functional subsystems constituted by aggregated entities which have the ability of expressing socio-economical purposes and functions.
Citation: Giulia Ajmone Marsan, Nicola Bellomo, Massimo Egidi. Towards a mathematical theory of complex socio-economical systems by functional subsystems representation. Kinetic and Related Models, 2008, 1 (2) : 249-278. doi: 10.3934/krm.2008.1.249
[1]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[2]

Andrea L. Bertozzi. Preface to special issue on mathematics of social systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : i-v. doi: 10.3934/dcdsb.2014.19.5i

[3]

Stefano Galatolo. Global and local complexity in weakly chaotic dynamical systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1607-1624. doi: 10.3934/dcds.2003.9.1607

[4]

John B. Baena, Daniel Cabarcas, Javier Verbel. On the complexity of solving generic overdetermined bilinear systems. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021047

[5]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[6]

Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181

[7]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[8]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[9]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[10]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[11]

Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017

[12]

Brian Straughan. Shocks and acceleration waves in modern continuum mechanics and in social systems. Evolution Equations and Control Theory, 2014, 3 (3) : 541-555. doi: 10.3934/eect.2014.3.541

[13]

Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025

[14]

Leif Arkeryd. A kinetic equation for spin polarized Fermi systems. Kinetic and Related Models, 2014, 7 (1) : 1-8. doi: 10.3934/krm.2014.7.1

[15]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure and Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[16]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[17]

Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121

[18]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[19]

Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1

[20]

Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (128)
  • HTML views (0)
  • Cited by (53)

[Back to Top]