-
Previous Article
Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff
- KRM Home
- This Issue
-
Next Article
From particle to kinetic and hydrodynamic descriptions of flocking
On Stop-and-Go waves in dense traffic
1. | RWTH Aachen, Mathematik, Templergraben 55, D-52056 Aachen, Germany |
2. | University of Victoria, Department of Mathematics and Statistics, PO Box 3045 STN CSC, Victoria, B.C., Canada V8W 3P4, Canada |
[1] |
Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161 |
[2] |
Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028 |
[3] |
Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108 |
[4] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[5] |
Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659 |
[6] |
Albert Erkip, Abba I. Ramadan. Existence of traveling waves for a class of nonlocal nonlinear equations with bell shaped kernels. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2125-2132. doi: 10.3934/cpaa.2017105 |
[7] |
Felisia Angela Chiarello, Harold Deivi Contreras, Luis Miguel Villada. Nonlocal reaction traffic flow model with on-off ramps. Networks and Heterogeneous Media, 2022, 17 (2) : 203-226. doi: 10.3934/nhm.2022003 |
[8] |
Dinh-Ke Tran, Nhu-Thang Nguyen. On regularity and stability for a class of nonlocal evolution equations with nonlinear perturbations. Communications on Pure and Applied Analysis, 2022, 21 (3) : 817-835. doi: 10.3934/cpaa.2021200 |
[9] |
Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789 |
[10] |
Luisa Fermo, Andrea Tosin. Fundamental diagrams for kinetic equations of traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 449-462. doi: 10.3934/dcdss.2014.7.449 |
[11] |
Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331 |
[12] |
Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic and Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048 |
[13] |
Matteo Piu, Gabriella Puppo. Stability analysis of microscopic models for traffic flow with lane changing. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022006 |
[14] |
Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010 |
[15] |
Feng Li, Erik Lindgren. Large time behavior for a nonlocal nonlinear gradient flow. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022079 |
[16] |
Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775 |
[17] |
John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501 |
[18] |
Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic and Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004 |
[19] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[20] |
Yoshihiro Ueda, Tohru Nakamura, Shuichi Kawashima. Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space. Kinetic and Related Models, 2008, 1 (1) : 49-64. doi: 10.3934/krm.2008.1.49 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]