
Previous Article
A domain decomposition method for a twoscale transport equation with energy flux conserved at the interface
 KRM Home
 This Issue

Next Article
Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables
Stability of planar stationary waves for damped wave equations with nonlinear convection in multidimensional half space
1.  Graduate School of Mathematics, Kyushu University, Fukuoka 8128581, Japan 
2.  Faculty of Mathematics, Kyushu University, Fukuoka 8128581, Japan, Japan 
[1] 
Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact LevenbergMarquardt method. Journal of Industrial & Management Optimization, 2011, 7 (1) : 199210. doi: 10.3934/jimo.2011.7.199 
[2] 
Yves Bourgault, Damien Broizat, PierreEmmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 127. doi: 10.3934/krm.2015.8.1 
[3] 
Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with timedependent viscous damping coefficient. Evolution Equations & Control Theory, 2018, 7 (3) : 353371. doi: 10.3934/eect.2018018 
[4] 
Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquidgas twophase flow model in a half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 20212042. doi: 10.3934/cpaa.2015.14.2021 
[5] 
SunHo Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible NavierStokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465479. doi: 10.3934/nhm.2013.8.465 
[6] 
Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the splitstep theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 695717. doi: 10.3934/dcdsb.2018203 
[7] 
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 2948. doi: 10.3934/dcds.2009.23.29 
[8] 
Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems  A, 2002, 8 (4) : 851864. doi: 10.3934/dcds.2002.8.851 
[9] 
Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems  A, 1998, 4 (4) : 721734. doi: 10.3934/dcds.1998.4.721 
[10] 
Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rateindependent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems  S, 2017, 10 (6) : 14671485. doi: 10.3934/dcdss.2017076 
[11] 
Shahad Alazzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete & Continuous Dynamical Systems  B, 2017, 22 (2) : 227245. doi: 10.3934/dcdsb.2017012 
[12] 
Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete & Continuous Dynamical Systems  A, 2005, 13 (2) : 503514. doi: 10.3934/dcds.2005.13.503 
[13] 
Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermoviscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265279. doi: 10.3934/eect.2015.4.265 
[14] 
LeongKwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 193207. doi: 10.3934/naco.2014.4.193 
[15] 
Lee DeVille, Nicole Riemer, Matthew West. Convergence of a generalized Weighted Flow Algorithm for stochastic particle coagulation. Journal of Computational Dynamics, 2019, 6 (1) : 6994. doi: 10.3934/jcd.2019003 
[16] 
Christopher Bose, Rua Murray. The exact rate of approximation in Ulam's method. Discrete & Continuous Dynamical Systems  A, 2001, 7 (1) : 219235. doi: 10.3934/dcds.2001.7.219 
[17] 
Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete & Continuous Dynamical Systems  B, 2010, 14 (4) : 14331444. doi: 10.3934/dcdsb.2010.14.1433 
[18] 
Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks & Heterogeneous Media, 2011, 6 (1) : 6175. doi: 10.3934/nhm.2011.6.61 
[19] 
Oleg Makarenkov, Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Communications on Pure & Applied Analysis, 2008, 7 (1) : 4961. doi: 10.3934/cpaa.2008.7.49 
[20] 
Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 107119. doi: 10.3934/cpaa.2015.14.107 
2018 Impact Factor: 1.38
Tools
Metrics
Other articles
by authors
[Back to Top]