December  2008, 1(4): 491-513. doi: 10.3934/krm.2008.1.491

Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$

1. 

IRENAV, French Naval Academy, 29240 BREST ARMEES, France

2. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Received  June 2008 Revised  June 2008 Published  October 2008

In this work, we show that integral estimates for a linear operator linked with Boltzmann quadratic operator considered in [1] can also be obtained for the case of higher singularities. Some estimates proven in this earlier work are improved, as in particular, we do not need any regularity with respect to the first function.
Citation: Radjesvarane Alexandre, Lingbing He. Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$. Kinetic & Related Models, 2008, 1 (4) : 491-513. doi: 10.3934/krm.2008.1.491
[1]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic & Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[2]

Wei-Xi Li, Lvqiao Liu. Gelfand-Shilov smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off. Kinetic & Related Models, 2020, 13 (5) : 1029-1046. doi: 10.3934/krm.2020036

[3]

Lvqiao Liu, Hao Wang. Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3113-3136. doi: 10.3934/cpaa.2020135

[4]

C. David Levermore, Weiran Sun. Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinetic & Related Models, 2010, 3 (2) : 335-351. doi: 10.3934/krm.2010.3.335

[5]

Palle Jorgensen, James Tian. Harmonic analysis of network systems via kernels and their boundary realizations. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021105

[6]

John R. Tucker. Attractors and kernels: Linking nonlinear PDE semigroups to harmonic analysis state-space decomposition. Conference Publications, 2001, 2001 (Special) : 366-370. doi: 10.3934/proc.2001.2001.366

[7]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic & Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

[8]

Andrea Bondesan, Laurent Boudin, Marc Briant, Bérénice Grec. Stability of the spectral gap for the Boltzmann multi-species operator linearized around non-equilibrium maxwell distributions. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2549-2573. doi: 10.3934/cpaa.2020112

[9]

Ricardo J. Alonso, Irene M. Gamba. Gain of integrability for the Boltzmann collisional operator. Kinetic & Related Models, 2011, 4 (1) : 41-51. doi: 10.3934/krm.2011.4.41

[10]

Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42.

[11]

Yong-Kum Cho. On the homogeneous Boltzmann equation with soft-potential collision kernels. Kinetic & Related Models, 2015, 8 (2) : 309-333. doi: 10.3934/krm.2015.8.309

[12]

Cédric Villani. Regularity of optimal transport and cut locus: From nonsmooth analysis to geometry to smooth analysis. Discrete & Continuous Dynamical Systems, 2011, 30 (2) : 559-571. doi: 10.3934/dcds.2011.30.559

[13]

Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569

[14]

Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441

[15]

Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137

[16]

G. A. Swarup. On the cut point conjecture. Electronic Research Announcements, 1996, 2: 98-100.

[17]

Frédéric Robert. On the influence of the kernel of the bi-harmonic operator on fourth order equations with exponential growth. Conference Publications, 2007, 2007 (Special) : 875-882. doi: 10.3934/proc.2007.2007.875

[18]

Tarek Saanouni. Non-linear bi-harmonic Choquard equations. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5033-5057. doi: 10.3934/cpaa.2020221

[19]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[20]

Ebenezer Bonyah, Fatmawati. An analysis of tuberculosis model with exponential decay law operator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2101-2117. doi: 10.3934/dcdss.2021057

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]