• Previous Article
    Existence and uniqueness of the electric potential profile in the edge of tokamak plasmas when constrained by the plasma-wall boundary physics
  • KRM Home
  • This Issue
  • Next Article
    Oscillatory behavior of Asymptotic-Preserving splitting methods for a linear model of diffusive relaxation
December  2008, 1(4): 591-617. doi: 10.3934/krm.2008.1.591

A kinetic model for grain growth

1. 

Hochschulrechenzentrum der Universität Bonn, Wegelerstraße 6, D-53115 Bonn, Germany

2. 

University of Oxford, Mathematical Institute, 24-29 St Giles’, Oxford, OX1 3LB, United Kingdom

3. 

Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB

4. 

Instituto de Ciencias Mathemáticas (CSIC-UAM-UC3M-UCM), Serrano 123, 28006 Madrid, Spain

Received  July 2008 Revised  August 2008 Published  October 2008

We provide a well--posedness analysis of a kinetic model for grain growth introduced by Fradkov which is based on the von Neumann--Mullins law. The model consists of an infinite number of transport equations with a tri-diagonal coupling modelling topological changes in the grain configuration. Self--consistency of this kinetic model is achieved by introducing a coupling weight which leads to a nonlinear and nonlocal system of equations.

We prove existence of solutions by approximation with finite dimensional systems. Key ingredients in passing to the limit are suitable super--solutions, a bound from below on the total mass, and a tightness estimate which ensures that no mass is transported to infinity in finite time.
Citation: Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic & Related Models, 2008, 1 (4) : 591-617. doi: 10.3934/krm.2008.1.591
[1]

Paolo Perfetti. A Nekhoroshev theorem for some infinite--dimensional systems. Communications on Pure & Applied Analysis, 2006, 5 (1) : 125-146. doi: 10.3934/cpaa.2006.5.125

[2]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[3]

Ken Shirakawa, Hiroshi Watanabe. Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 139-159. doi: 10.3934/dcdss.2014.7.139

[4]

Shin-Ichiro Ei, Hirofumi Izuhara, Masayasu Mimura. Infinite dimensional relaxation oscillation in aggregation-growth systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1859-1887. doi: 10.3934/dcdsb.2012.17.1859

[5]

Sergey A. Denisov. Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 755-764. doi: 10.3934/dcds.2009.23.755

[6]

María J. Garrido-Atienza, Oleksiy V. Kapustyan, José Valero. Preface to the special issue "Finite and infinite dimensional multivalued dynamical systems". Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : ⅰ-ⅳ. doi: 10.3934/dcdsb.201705i

[7]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[8]

Xavier Cabré, Amadeu Delshams, Marian Gidea, Chongchun Zeng. Preface of Llavefest: A broad perspective on finite and infinite dimensional dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : ⅰ-ⅲ. doi: 10.3934/dcds.201812i

[9]

Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic & Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557

[10]

Charles Nguyen, Stephen Pankavich. A one-dimensional kinetic model of plasma dynamics with a transport field. Evolution Equations & Control Theory, 2014, 3 (4) : 681-698. doi: 10.3934/eect.2014.3.681

[11]

Akio Ito, Nobuyuki Kenmochi, Noriaki Yamazaki. Global solvability of a model for grain boundary motion with constraint. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 127-146. doi: 10.3934/dcdss.2012.5.127

[12]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[13]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[14]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[15]

Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120

[16]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[17]

Michele Gianfelice, Enza Orlandi. Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks & Heterogeneous Media, 2014, 9 (2) : 269-297. doi: 10.3934/nhm.2014.9.269

[18]

Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem. A dynamical two-dimensional traffic model in an anisotropic network. Networks & Heterogeneous Media, 2013, 8 (3) : 663-684. doi: 10.3934/nhm.2013.8.663

[19]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 655-673. doi: 10.3934/dcdsb.2010.14.655

[20]

József Z. Farkas, Thomas Hagen. Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1825-1839. doi: 10.3934/cpaa.2009.8.1825

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

[Back to Top]