\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of the travelling wave in a 2D weakly nonlinear Stefan problem

Abstract Related Papers Cited by
  • We investigate the stability of the travelling wave (TW) solution in a 2D Stefan problem, a simplified version of a solid-liquid interface model. It is intended as a paradigm problem to present our method based on: (i) definition of a suitable linear one dimensional operator, (ii) projection with respect to the $x$ coordinate only; (iii) Lyapunov-Schmidt method. The main issue is that we are able to derive a parabolic equation for the corrugated front $\varphi$ near the TW as a solvability condition. This equation involves two linear pseudo-differential operators, one acting on $\varphi$, the other on $(\varphi_y)^2$ and clearly appears as a generalization of the Kuramoto-Sivashinsky equation related to turbulence phenomena in chemistry and combustion. A large part of the paper is devoted to study the properties of these operators in the context of functional spaces in the $y$ and $x,y$ coordinates with periodic boundary conditions. Technical results are deferred to the appendices.
    Mathematics Subject Classification: Primary: 35K55; Secondary: 35B35, 80A22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return