
Previous Article
Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray$\alpha$MHD model
 KRM Home
 This Issue

Next Article
Twoscale semiLagrangian simulation of a charged particle beam in a periodic focusing channel
A symmetrization of the relativistic Euler equations with several spatial variables
1.  Laboratoire JacquesLouis Lions, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris, France 
2.  1726 Iwasaki, Hodogaya, Yokohama 2400015, Japan 
[1] 
Reinhard Racke, Jürgen Saal. Hyperbolic NavierStokes equations I: Local wellposedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195215. doi: 10.3934/eect.2012.1.195 
[2] 
Xumin Gu. Wellposedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the noncollinearity condition. Communications on Pure & Applied Analysis, 2019, 18 (2) : 569602. doi: 10.3934/cpaa.2019029 
[3] 
Xin Zhong. Global wellposedness and exponential decay for 3D nonhomogeneous magnetomicropolar fluid equations with vacuum. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2021185 
[4] 
Jishan Fan, Yueling Jia. Local wellposedness of the full compressible NavierStokesMaxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97106. doi: 10.3934/krm.2018005 
[5] 
Tong Tang, Jianzhu Sun. Local wellposedness for the densitydependent incompressible magnetomicropolar system with vacuum. Discrete & Continuous Dynamical Systems  B, 2021, 26 (12) : 60176026. doi: 10.3934/dcdsb.2020377 
[6] 
Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local wellposedness and blowup criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 18091823. doi: 10.3934/cpaa.2012.11.1809 
[7] 
Long Fan, ChengJie Liu, Lizhi Ruan. Local wellposedness of solutions to the boundary layer equations for compressible twofluid flow. Electronic Research Archive, 2021, 29 (6) : 40094050. doi: 10.3934/era.2021070 
[8] 
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local wellposedness and illposedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 26992723. doi: 10.3934/dcds.2020382 
[9] 
Manas Bhatnagar, Hailiang Liu. Wellposedness and critical thresholds in a nonlocal Euler system with relaxation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 52715289. doi: 10.3934/dcds.2021076 
[10] 
George Avalos, Roberto Triggiani. Semigroup wellposedness in the energy space of a parabolichyperbolic coupled StokesLamé PDE system of fluidstructure interaction. Discrete & Continuous Dynamical Systems  S, 2009, 2 (3) : 417447. doi: 10.3934/dcdss.2009.2.417 
[11] 
Fabio S. Bemfica, Marcelo M. Disconzi, P. Jameson Graber. Local wellposedness in Sobolev spaces for firstorder barotropic causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, 2021, 20 (9) : 28852914. doi: 10.3934/cpaa.2021068 
[12] 
Hung Luong. Local wellposedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 26572682. doi: 10.3934/cpaa.2018126 
[13] 
Akansha Sanwal. Local wellposedness for the Zakharov system in dimension d ≤ 3. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021147 
[14] 
Yong Zhou, Jishan Fan. Local wellposedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813818. doi: 10.3934/cpaa.2010.9.813 
[15] 
Boris Kolev. Local wellposedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167189. doi: 10.3934/jgm.2017007 
[16] 
Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Global wellposedness and long time behaviors of chemotaxisfluid system modeling coral fertilization. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 21352163. doi: 10.3934/dcds.2020109 
[17] 
Elaine Cozzi, James P. Kelliher. Wellposedness of the 2D Euler equations when velocity grows at infinity. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 23612392. doi: 10.3934/dcds.2019100 
[18] 
Jiali Lian. Global wellposedness of the freeinterface incompressible Euler equations with damping. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 20612087. doi: 10.3934/dcds.2020106 
[19] 
Daniel Coutand, Steve Shkoller. A simple proof of wellposedness for the freesurface incompressible Euler equations. Discrete & Continuous Dynamical Systems  S, 2010, 3 (3) : 429449. doi: 10.3934/dcdss.2010.3.429 
[20] 
Xinjie Dai, Aiguo Xiao, Weiping Bu. Stochastic fractional integrodifferential equations with weakly singular kernels: Wellposedness and Euler–Maruyama approximation. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021225 
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]