June  2009, 2(2): 363-378. doi: 10.3934/krm.2009.2.363

Double milling in self-propelled swarms from kinetic theory


ICREA-Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain


Department of Mathematics, California State University, Northridge, CA 91330-8313, United States, United States

Received  December 2008 Revised  March 2009 Published  May 2009

We present a kinetic theory for swarming systems of interacting, self-propelled discrete particles. Starting from the Liouville equation for the many-body problem we derive a kinetic equation for the single particle probability distribution function and the related macroscopic hydrodynamic equations. General solutions include flocks of constant density and fixed velocity and other non-trivial morphologies such as compactly supported rotating mills. The kinetic theory approach leads us to the identification of macroscopic structures otherwise not recognized as solutions of the hydrodynamic equations, such as double mills of two superimposed flows. We find the conditions allowing for the existence of such solutions and compare to the case of single mills.
Citation: José A. Carrillo, M. R. D’Orsogna, V. Panferov. Double milling in self-propelled swarms from kinetic theory. Kinetic and Related Models, 2009, 2 (2) : 363-378. doi: 10.3934/krm.2009.2.363

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329


Seung-Yeal Ha, Doron Levy. Particle, kinetic and fluid models for phototaxis. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 77-108. doi: 10.3934/dcdsb.2009.12.77


Vadim Kaushansky, Christoph Reisinger. Simulation of a simple particle system interacting through hitting times. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5481-5502. doi: 10.3934/dcdsb.2019067


S.-I. Ei, M. Mimura, M. Nagayama. Interacting spots in reaction diffusion systems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 31-62. doi: 10.3934/dcds.2006.14.31


Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic and Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557


Seung-Yeal Ha, Eitan Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic and Related Models, 2008, 1 (3) : 415-435. doi: 10.3934/krm.2008.1.415


Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic and Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429


Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic and Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621


Valery Imaikin, Alexander Komech, Herbert Spohn. Scattering theory for a particle coupled to a scalar field. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 387-396. doi: 10.3934/dcds.2004.10.387


David Cowan. Rigid particle systems and their billiard models. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 111-130. doi: 10.3934/dcds.2008.22.111


Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic and Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235


Hung-Wen Kuo. Effect of abrupt change of the wall temperature in the kinetic theory. Kinetic and Related Models, 2019, 12 (4) : 765-789. doi: 10.3934/krm.2019030


José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401


Grigori Chapiro, Lucas Furtado, Dan Marchesin, Stephen Schecter. Stability of interacting traveling waves in reaction-convection-diffusion systems. Conference Publications, 2015, 2015 (special) : 258-266. doi: 10.3934/proc.2015.0258


Eliot Fried. New insights into the classical mechanics of particle systems. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1469-1504. doi: 10.3934/dcds.2010.28.1469


Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017


Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic and Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049


Marzia Bisi, Tommaso Ruggeri, Giampiero Spiga. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics. Kinetic and Related Models, 2018, 11 (1) : 71-95. doi: 10.3934/krm.2018004


Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic and Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253


Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic and Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

2020 Impact Factor: 1.432


  • PDF downloads (201)
  • HTML views (0)
  • Cited by (145)

[Back to Top]