• Previous Article
    Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equation in the half space
  • KRM Home
  • This Issue
  • Next Article
    A smooth model for fiber lay-down processes and its diffusion approximations
September  2009, 2(3): 503-520. doi: 10.3934/krm.2009.2.503

A local existence result for a plasma physics model containing a fully coupled magnetic field

1. 

University of Bayreuth, Department of Mathematics, D-95440 Bayreuth, Germany

Received  April 2009 Revised  June 2009 Published  July 2009

A local existence theorem is proved for classical solutions of the Vlasov-Poisswell system, a set of collisionless equations used in plasma physics. Although the method employed is standard, there are several technical difficulties in the treatment of this system that arise mainly from the, compared to related systems, special form of the electric-field term. Furthermore, uniqueness of classical solutions is proved and a continuation criterion for solutions well known for other collisionless kinetic equations is established. Finally, a global existence result for a regularized version of the system is derived and comments are given on the problem of obtaining global weak solutions.
Citation: Martin Seehafer. A local existence result for a plasma physics model containing a fully coupled magnetic field. Kinetic & Related Models, 2009, 2 (3) : 503-520. doi: 10.3934/krm.2009.2.503
[1]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic & Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

[2]

Christophe Pallard. Growth estimates and uniform decay for a collisionless plasma. Kinetic & Related Models, 2011, 4 (2) : 549-567. doi: 10.3934/krm.2011.4.549

[3]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[4]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[5]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[6]

Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379

[7]

Frédérique Charles, Bruno Després, Benoît Perthame, Rémis Sentis. Nonlinear stability of a Vlasov equation for magnetic plasmas. Kinetic & Related Models, 2013, 6 (2) : 269-290. doi: 10.3934/krm.2013.6.269

[8]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[9]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[10]

Kazuo Aoki, François Golse. On the speed of approach to equilibrium for a collisionless gas. Kinetic & Related Models, 2011, 4 (1) : 87-107. doi: 10.3934/krm.2011.4.87

[11]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[12]

Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 13-33. doi: 10.3934/dcds.2009.24.13

[13]

Armando Majorana. Approximate explicit stationary solutions to a Vlasov equation for planetary rings. Kinetic & Related Models, 2017, 10 (2) : 467-479. doi: 10.3934/krm.2017018

[14]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

[15]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[16]

Daniel Franco, J. R. L. Webb. Collisionless orbits of singular and nonsingular dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 747-757. doi: 10.3934/dcds.2006.15.747

[17]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[18]

Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic & Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893

[19]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[20]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]