-
Previous Article
Stability of the travelling wave in a 2D weakly nonlinear Stefan problem
- KRM Home
- This Issue
-
Next Article
The multi-water-bag equations for collisionless kinetic modeling
1D numerical simulation of the mep mathematical model in ballistic diode problem
1. | Institute of Mathematics, Novosibirsk, 630090, Russian Federation |
2. | Novosibirsk State University, Novosibirsk, 630090, Russian Federation |
[1] |
Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109 |
[2] |
Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic and Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35 |
[3] |
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 |
[4] |
Dietmar Oelz, Alex Mogilner. A drift-diffusion model for molecular motor transport in anisotropic filament bundles. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4553-4567. doi: 10.3934/dcds.2016.36.4553 |
[5] |
H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319 |
[6] |
Luigi Barletti, Philipp Holzinger, Ansgar Jüngel. Formal derivation of quantum drift-diffusion equations with spin-orbit interaction. Kinetic and Related Models, 2022, 15 (2) : 257-282. doi: 10.3934/krm.2022007 |
[7] |
Kai Qu, Qi Dong, Chanjie Li, Feiyu Zhang. Finite element method for two-dimensional linear advection equations based on spline method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2471-2485. doi: 10.3934/dcdss.2021056 |
[8] |
Zhiming Chen, Weibing Deng, Huang Ye. A new upscaling method for the solute transport equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 941-960. doi: 10.3934/dcds.2005.13.941 |
[9] |
Gianluca Crippa, Laura V. Spinolo. An overview on some results concerning the transport equation and its applications to conservation laws. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1283-1293. doi: 10.3934/cpaa.2010.9.1283 |
[10] |
Takayoshi Ogawa, Hiroshi Wakui. Stability and instability of solutions to the drift-diffusion system. Evolution Equations and Control Theory, 2017, 6 (4) : 587-597. doi: 10.3934/eect.2017029 |
[11] |
C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477 |
[12] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[13] |
Pierre Degond, Amic Frouvelle, Jian-Guo Liu. From kinetic to fluid models of liquid crystals by the moment method. Kinetic and Related Models, 2022, 15 (3) : 417-465. doi: 10.3934/krm.2021047 |
[14] |
Yuchi Qiu, Weitao Chen, Qing Nie. A hybrid method for stiff reaction–diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6387-6417. doi: 10.3934/dcdsb.2019144 |
[15] |
Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 |
[16] |
Raphael Kruse, Yue Wu. A randomized Milstein method for stochastic differential equations with non-differentiable drift coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3475-3502. doi: 10.3934/dcdsb.2018253 |
[17] |
Sho Matsumoto, Jonathan Novak. A moment method for invariant ensembles. Electronic Research Announcements, 2018, 25: 60-71. doi: 10.3934/era.2018.25.007 |
[18] |
T. Hillen. On the $L^2$-moment closure of transport equations: The general case. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 299-318. doi: 10.3934/dcdsb.2005.5.299 |
[19] |
T. Hillen. On the $L^2$-moment closure of transport equations: The Cattaneo approximation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 961-982. doi: 10.3934/dcdsb.2004.4.961 |
[20] |
T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]