March  2009, 2(1): 81-107. doi: 10.3934/krm.2009.2.81

1D numerical simulation of the mep mathematical model in ballistic diode problem

1. 

Institute of Mathematics, Novosibirsk, 630090, Russian Federation

2. 

Novosibirsk State University, Novosibirsk, 630090, Russian Federation

Received  April 2008 Revised  November 2008 Published  January 2009

Numerical algorithms for finding approximate solutions of the macroscopic balance equations of charge transport in semiconductors based on the maximum entropy principle [A.M. Anile, V. Romano, Non parabolic band transport in semiconductors: closure of the moment equations, Contin. Mech. Thermodyn. 11 (1999), 307--325; V. Romano, Non parabolic band transport in semiconductors: closure of the production terms in the moment equations, Contin. Mech. Thermodyn. 12(2000), 31--51] are constructed and discussed for a typical 1D problem.
Citation: Alexander Blokhin, Alesya Ibragimova. 1D numerical simulation of the mep mathematical model in ballistic diode problem. Kinetic and Related Models, 2009, 2 (1) : 81-107. doi: 10.3934/krm.2009.2.81
[1]

Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109

[2]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic and Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[3]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[4]

Dietmar Oelz, Alex Mogilner. A drift-diffusion model for molecular motor transport in anisotropic filament bundles. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4553-4567. doi: 10.3934/dcds.2016.36.4553

[5]

H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319

[6]

Luigi Barletti, Philipp Holzinger, Ansgar Jüngel. Formal derivation of quantum drift-diffusion equations with spin-orbit interaction. Kinetic and Related Models, 2022, 15 (2) : 257-282. doi: 10.3934/krm.2022007

[7]

Kai Qu, Qi Dong, Chanjie Li, Feiyu Zhang. Finite element method for two-dimensional linear advection equations based on spline method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2471-2485. doi: 10.3934/dcdss.2021056

[8]

Zhiming Chen, Weibing Deng, Huang Ye. A new upscaling method for the solute transport equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 941-960. doi: 10.3934/dcds.2005.13.941

[9]

Gianluca Crippa, Laura V. Spinolo. An overview on some results concerning the transport equation and its applications to conservation laws. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1283-1293. doi: 10.3934/cpaa.2010.9.1283

[10]

Takayoshi Ogawa, Hiroshi Wakui. Stability and instability of solutions to the drift-diffusion system. Evolution Equations and Control Theory, 2017, 6 (4) : 587-597. doi: 10.3934/eect.2017029

[11]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

[12]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[13]

Pierre Degond, Amic Frouvelle, Jian-Guo Liu. From kinetic to fluid models of liquid crystals by the moment method. Kinetic and Related Models, 2022, 15 (3) : 417-465. doi: 10.3934/krm.2021047

[14]

Yuchi Qiu, Weitao Chen, Qing Nie. A hybrid method for stiff reaction–diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6387-6417. doi: 10.3934/dcdsb.2019144

[15]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[16]

Raphael Kruse, Yue Wu. A randomized Milstein method for stochastic differential equations with non-differentiable drift coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3475-3502. doi: 10.3934/dcdsb.2018253

[17]

Sho Matsumoto, Jonathan Novak. A moment method for invariant ensembles. Electronic Research Announcements, 2018, 25: 60-71. doi: 10.3934/era.2018.25.007

[18]

T. Hillen. On the $L^2$-moment closure of transport equations: The general case. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 299-318. doi: 10.3934/dcdsb.2005.5.299

[19]

T. Hillen. On the $L^2$-moment closure of transport equations: The Cattaneo approximation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 961-982. doi: 10.3934/dcdsb.2004.4.961

[20]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]