# American Institute of Mathematical Sciences

March  2010, 3(1): 143-163. doi: 10.3934/krm.2010.3.143

## A model of sympatric speciation through reinforcement

 1 Department of Biosciences at Novum, Karolinska Institutet, Department of biosciences and nutrition, Hälsovägen 7, 141 57 Huddinge, Sweden 2 Mathematical Sciences, Chalmers University of Technology and Mathematical Sciences, University of Gothenburg, 712 96 Göteborg, Sweden, Sweden

Received  September 2009 Revised  December 2009 Published  January 2010

Sympatric speciation, i.e. the evolutionary split of one species into two in the same environment, has been a highly troublesome concept. It has been a questioned if it is actually possible. Even though there have been a number of reported results both in the wild and from controlled experiments in laboratories, those findings are both hard to get and hard to analyze, or even repeat. In the current study we propose a mathematical model which addresses the question of sympatric speciation and the evolution of reinforcement. Our aim has been to capture some of the essential features such as: phenotype, resources, competition, heritage, mutation, and reinforcement, in as simple a way as possible. Still, the resulting model is not too easy to grasp with purely analytical tools, so we have also complemented those studies with stochastic simulations. We present a few results that both illustrates the usefulness of such a model, but also rises new biological questions about sympatric speciation and reinforcement in particular.
Citation: Johan Henriksson, Torbjörn Lundh, Bernt Wennberg. A model of sympatric speciation through reinforcement. Kinetic and Related Models, 2010, 3 (1) : 143-163. doi: 10.3934/krm.2010.3.143
 [1] Cristina Anton, Jian Deng, Yau Shu Wong, Yile Zhang, Weiping Zhang, Stephan Gabos, Dorothy Yu Huang, Can Jin. Modeling and simulation for toxicity assessment. Mathematical Biosciences & Engineering, 2017, 14 (3) : 581-606. doi: 10.3934/mbe.2017034 [2] Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991 [3] Ingenuin Gasser, Marcus Kraft. Modelling and simulation of fires in tunnel networks. Networks and Heterogeneous Media, 2008, 3 (4) : 691-707. doi: 10.3934/nhm.2008.3.691 [4] Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic and Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501 [5] Petr Bauer, Michal Beneš, Radek Fučík, Hung Hoang Dieu, Vladimír Klement, Radek Máca, Jan Mach, Tomáš Oberhuber, Pavel Strachota, Vítězslav Žabka, Vladimír Havlena. Numerical simulation of flow in fluidized beds. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 833-846. doi: 10.3934/dcdss.2015.8.833 [6] Ingenuin Gasser. Modelling and simulation of a solar updraft tower. Kinetic and Related Models, 2009, 2 (1) : 191-204. doi: 10.3934/krm.2009.2.191 [7] Marilena Filippucci, Andrea Tallarico, Michele Dragoni. Simulation of lava flows with power-law rheology. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 677-685. doi: 10.3934/dcdss.2013.6.677 [8] Arno F. Münster. Simulation of stationary chemical patterns and waves in ionic reactions. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 35-46. doi: 10.3934/dcdsb.2002.2.35 [9] Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035 [10] Thomas G. Hallam, Qingping Deng. Simulation of structured populations in chemically stressed environments. Mathematical Biosciences & Engineering, 2006, 3 (1) : 51-65. doi: 10.3934/mbe.2006.3.51 [11] Dianmo Li, Zengxiang Gao, Zufei Ma, Baoyu Xie, Zhengjun Wang. Two general models for the simulation of insect population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 623-628. doi: 10.3934/dcdsb.2004.4.623 [12] Andriy Sokolov, Robert Strehl, Stefan Turek. Numerical simulation of chemotaxis models on stationary surfaces. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2689-2704. doi: 10.3934/dcdsb.2013.18.2689 [13] Jinhae Park, Feng Chen, Jie Shen. Modeling and simulation of switchings in ferroelectric liquid crystals. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1419-1440. doi: 10.3934/dcds.2010.26.1419 [14] Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks and Heterogeneous Media, 2020, 15 (4) : 653-679. doi: 10.3934/nhm.2020018 [15] Sergio Amat, Pablo Pedregal. On a variational approach for the analysis and numerical simulation of ODEs. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1275-1291. doi: 10.3934/dcds.2013.33.1275 [16] Jimmy Huang, Ali Asgary, Jianhong Wu. Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM). Big Data & Information Analytics, 2016, 1 (1) : v-v. doi: 10.3934/bdia.2016.1.1v [17] Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks and Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527 [18] Xiaoli Yang, Jin Liang, Bei Hu. Minimization of carbon abatement cost: Modeling, analysis and simulation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2939-2969. doi: 10.3934/dcdsb.2017158 [19] John V. Shebalin. Theory and simulation of real and ideal magnetohydrodynamic turbulence. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 153-174. doi: 10.3934/dcdsb.2005.5.153 [20] Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

2020 Impact Factor: 1.432