
Previous Article
$L^1$ averaging lemma for transport equations with Lipschitz force fields
 KRM Home
 This Issue

Next Article
Kinetic limits for waves in a random medium
Analytic regularity for solutions of the spatially homogeneous LandauFermiDirac equation for hard potentials
1.  Department of Mathematics, Beijing Institute of Technology, Beijing 100081 
References:
show all references
References:
[1] 
Yoshinori Morimoto, Karel PravdaStarov, ChaoJiang Xu. A remark on the ultraanalytic smoothing properties of the spatially homogeneous Landau equation. Kinetic and Related Models, 2013, 6 (4) : 715727. doi: 10.3934/krm.2013.6.715 
[2] 
Maria J. Esteban. GagliardoNirenbergSobolev inequalities on planar graphs. Communications on Pure and Applied Analysis, 2022, 21 (6) : 21012114. doi: 10.3934/cpaa.2022051 
[3] 
Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic and Related Models, 2016, 9 (1) : 149. doi: 10.3934/krm.2016.9.1 
[4] 
Léo Glangetas, HaoGuang Li, ChaoJiang Xu. Sharp regularity properties for the noncutoff spatially homogeneous Boltzmann equation. Kinetic and Related Models, 2016, 9 (2) : 299371. doi: 10.3934/krm.2016.9.299 
[5] 
Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic and Related Models, 2008, 1 (3) : 453489. doi: 10.3934/krm.2008.1.453 
[6] 
Yoshinori Morimoto, Seiji Ukai, ChaoJiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 187212. doi: 10.3934/dcds.2009.24.187 
[7] 
Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 4362. doi: 10.3934/jmd.2008.2.43 
[8] 
Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 22312263. doi: 10.3934/cpaa.2015.14.2231 
[9] 
V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 413425. doi: 10.3934/dcds.2008.22.413 
[10] 
Yoshinori Morimoto, ChaoJiang Xu. Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules. Kinetic and Related Models, 2020, 13 (5) : 951978. doi: 10.3934/krm.2020033 
[11] 
Léo Glangetas, Mohamed Najeme. Analytical regularizing effect for the radial and spatially homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 407427. doi: 10.3934/krm.2013.6.407 
[12] 
Nimish Shah, Lei Yang. Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 52475287. doi: 10.3934/dcds.2020227 
[13] 
Immanuel Ben Porat. Local conditional regularity for the Landau equation with Coulomb potential. Kinetic and Related Models, , () : . doi: 10.3934/krm.2022010 
[14] 
QiRui Li, XuJia Wang. Regularity of the homogeneous MongeAmpère equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 60696084. doi: 10.3934/dcds.2015.35.6069 
[15] 
Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic and Related Models, 2015, 8 (4) : 617650. doi: 10.3934/krm.2015.8.617 
[16] 
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems  S, 2009, 2 (3) : 473481. doi: 10.3934/dcdss.2009.2.473 
[17] 
Marcel Braukhoff. Global analytic solutions of the semiconductor BoltzmannDiracBenney equation with relaxation time approximation. Kinetic and Related Models, 2020, 13 (1) : 187210. doi: 10.3934/krm.2020007 
[18] 
Joseph J Kohn. Nirenberg's contributions to complex analysis. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 537545. doi: 10.3934/dcds.2011.30.537 
[19] 
Alexei Shadrin. The LandauKolmogorov inequality revisited. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 11831210. doi: 10.3934/dcds.2014.34.1183 
[20] 
ZhengChao Han, YanYan Li. On the local solvability of the Nirenberg problem on $\mathbb S^2$. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 607615. doi: 10.3934/dcds.2010.28.607 
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]