-
Previous Article
Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity
- KRM Home
- This Issue
-
Next Article
Analytic regularity for solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials
$L^1$ averaging lemma for transport equations with Lipschitz force fields
1. | École Normale Suprieure, Dpartement de Mathmatiques et Applications, 75230 Paris Cedex 05, France |
References:
show all references
References:
[1] |
Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068 |
[2] |
Huaiyu Jian, Hongjie Ju, Wei Sun. Traveling fronts of curve flow with external force field. Communications on Pure and Applied Analysis, 2010, 9 (4) : 975-986. doi: 10.3934/cpaa.2010.9.975 |
[3] |
Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997 |
[4] |
Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic and Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499 |
[5] |
Bernard Ducomet. Asymptotics for 1D flows with time-dependent external fields. Conference Publications, 2007, 2007 (Special) : 323-333. doi: 10.3934/proc.2007.2007.323 |
[6] |
Fei Meng, Xiao-Ping Yang. Elastic limit and vanishing external force for granular systems. Kinetic and Related Models, 2019, 12 (1) : 159-176. doi: 10.3934/krm.2019007 |
[7] |
Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647 |
[8] |
Lan Wen. A uniform $C^1$ connecting lemma. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257 |
[9] |
T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665 |
[10] |
Zhigang Wu, Wenjun Wang. Uniform stability of the Boltzmann equation with an external force near vacuum. Communications on Pure and Applied Analysis, 2015, 14 (3) : 811-823. doi: 10.3934/cpaa.2015.14.811 |
[11] |
Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003 |
[12] |
Jean René Chazottes, F. Durand. Local rates of Poincaré recurrence for rotations and weak mixing. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 175-183. doi: 10.3934/dcds.2005.12.175 |
[13] |
Jacky Cresson. The transfer lemma for Graff tori and Arnold diffusion time. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 787-800. doi: 10.3934/dcds.2001.7.787 |
[14] |
Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763 |
[15] |
T. Tachim Medjo. Averaging of a 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external forces. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1281-1305. doi: 10.3934/cpaa.2011.10.1281 |
[16] |
T. Tachim Medjo. Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1119-1140. doi: 10.3934/cpaa.2014.13.1119 |
[17] |
Arnaud Goullet, Ian Glasgow, Nadine Aubry. Dynamics of microfluidic mixing using time pulsing. Conference Publications, 2005, 2005 (Special) : 327-336. doi: 10.3934/proc.2005.2005.327 |
[18] |
Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253 |
[19] |
T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265 |
[20] |
Janusz Mierczyński, Wenxian Shen. Time averaging for nonautonomous/random linear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 661-699. doi: 10.3934/dcdsb.2008.9.661 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]