[1]

F. V. Atkinson and L. A. Peletier, Similarity solutions of the nonlinear diffusion equation, Arch. Rat. Mech. Anal., 54 (1974), 373392.

[2]

L. Boltzmann, (translated by Stephen G. Brush), "Lectures on Gas Theory," Dover Publications, Inc. New York, 1964.

[3]

R. E. Caflish, The fluid dynamical limit of the nonlinear Boltzmann equation, Comm. Pure Appl. Math., 33 (1980), 491508.

[4]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," SpringerVerlag, Berlin, 1994.

[5]

S. Chapman and T. G. Cowling, "The Mathematical Theory of NonUniform Gases," 3rd edition, Cambridge University Press, 1990.

[6]

C. T. Duyn and L. A. Peletier, A class of similarity solution of the nonlinear diffusion equation, Nonlinear Analysis, T.M.A., 1 (1977), 223233.

[7]

R. Esposito and M. Pulvirenti, From particle to fluids, in "Handbook of Mathematical Fluid Dynamics," Vol. III, NorthHolland, Amsterdam, (2004), 182.

[8]

F. Golse, B. Perthame and C. Sulem, On a boundary layer problem for the nonlinear Boltzmann equation, Arch. Ration. Mech. Anal., 103 (1986), 8196.

[9]

J. Goodman and Z. P. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Rational Mech. Anal., 121 (1992), 235265.

[10]

H. Grad, "Asymptotic Theory of the Boltzmann Equation II," in "Rarefied Gas Dynamics" (J. A. Laurmann, ed.), Vol. 1, Academic Press, New York, (1963), 2659.

[11]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 10811094.

[12]

D. Hoff and T. P. Liu, The inviscid limit for the NavierStokes equations of compressible isentropic flow with shock data, India. Univ. Math. J., 36 (1989), 861915.

[13]

F. M. Huang, J. Li and A. Matsumura, Stability of the combination of the viscous contact wave and the rarefaction wave to the compressible NavierStokes equations, Arch. Ration. Mech. Anal., 197 (2010), 89116.

[14]

F. M. Huang, A. Matsumura and Z. P. Xin, Stability of contact discontinuities for the 1D compressible NavierStokes equations, Arch. Rat. Mech. Anal., 179 (2006), 5577.

[15]

F. M. Huang, Y. Wang and T. Yang, Hydrodynamic limit of the Boltzmann equation with contact discontinuities, Comm. Math. Phy., 295 (2010), 293326.

[16]

F. M. Huang, Z. P. Xin and T. Yang, Contact discontinuities with general perturbation for gas motion, Adv. Math., 219 (2008), 12461297.

[17]

S. Jiang, G. X. Ni and W. J. Sun, Vanishing viscosity limit to rarefaction waves for the NavierStokes equiations of onedimensional compressible heatconducting fluids, SIAM J. Math. Anal., 38 (2006), 368384.

[18]

M. Lachowicz, On the initial layer and existence theorem for the nonlinear Boltzmann equation, Math. Methods Appl.Sci., 9 (1987), 342366.

[19]

T. Liu, T. Yang, and S. H. Yu, Energy method for the Boltzmann equation, Physica D, 188 (2004), 178192.

[20]

T. Liu, T. Yang, S. H. Yu and H. J. Zhao, Nonlinear stability of rarefaction waves for the Boltzmann equation, Arch. Rat. Mech. Anal., 181 (2006), 333371.

[21]

T. Liu and S. H. Yu, Boltzmann equation: Micromacro decompositions and positivity of shock profiles, Commun. Math. Phys., 246 (2004), 133179.

[22]

S. X. Ma, Zero dissipation limit to strong contact discontinuity for the 1D compressible NavierStokes equations, J. Diff. Eqs., 248 (2010), 95110.

[23]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction wave of the solutions of a onedimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 113.

[24]

T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Commun. Math. Phys., 61 (1978), 119148.

[25]

J. Smoller, "Shock Waves and ReactionDiffusion Equations," 2nd edition, SpringerVerlag, New York, 1994.

[26]

S. Ukai and K. Asano, The Euler limit and the initial layer of the nonlinear Boltzmann equation, Hokkaido Math. J., 12 (1983), 303324.

[27]

S. Ukai, T. Yang and H. J. Zhao, Global solutions to the Boltzmann equation with external forces, Analysis and Applications, 3 (2005), 157193.

[28]

H. Y. Wang, Viscous limits for piecewise smooth solutions of the psystem, J. Math. Anal. Appl., 299 (2004), 411432.

[29]

Y. Wang, Zero dissipation limit of the compressible heatconducting NavierStokes equations in the presence of the shock, Acta Mathematica Scientia Ser. B, 28 (2008), 727748.

[30]

Z. P. Xin, Zero dissipation limit to rarefaction waves for the onedimentional NavierStokes equations of compressible isentropic gases, Commun. Pure Appl. Math, XLVI (1993), 621665.

[31]

Z. P. Xin and H. H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible NavierStokes equations, J. Diff. Eqs., 249 (2010), 827871.

[32]

S. H. Yu, Hydrodynamic limits with shock waves of the Boltzmann equations, Commun. Pure Appl. Math, 58 (2005), 409443.
