[1]
|
F. V. Atkinson and L. A. Peletier, Similarity solutions of the nonlinear diffusion equation, Arch. Rat. Mech. Anal., 54 (1974), 373-392.
|
[2]
|
L. Boltzmann, (translated by Stephen G. Brush), "Lectures on Gas Theory," Dover Publications, Inc. New York, 1964.
|
[3]
|
R. E. Caflish, The fluid dynamical limit of the nonlinear Boltzmann equation, Comm. Pure Appl. Math., 33 (1980), 491-508.
|
[4]
|
C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Springer-Verlag, Berlin, 1994.
|
[5]
|
S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases," 3rd edition, Cambridge University Press, 1990.
|
[6]
|
C. T. Duyn and L. A. Peletier, A class of similarity solution of the nonlinear diffusion equation, Nonlinear Analysis, T.M.A., 1 (1977), 223-233.
|
[7]
|
R. Esposito and M. Pulvirenti, From particle to fluids, in "Handbook of Mathematical Fluid Dynamics," Vol. III, North-Holland, Amsterdam, (2004), 1-82.
|
[8]
|
F. Golse, B. Perthame and C. Sulem, On a boundary layer problem for the nonlinear Boltzmann equation, Arch. Ration. Mech. Anal., 103 (1986), 81-96.
|
[9]
|
J. Goodman and Z. P. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Rational Mech. Anal., 121 (1992), 235-265.
|
[10]
|
H. Grad, "Asymptotic Theory of the Boltzmann Equation II," in "Rarefied Gas Dynamics" (J. A. Laurmann, ed.), Vol. 1, Academic Press, New York, (1963), 26-59.
|
[11]
|
Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.
|
[12]
|
D. Hoff and T. P. Liu, The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data, India. Univ. Math. J., 36 (1989), 861-915.
|
[13]
|
F. M. Huang, J. Li and A. Matsumura, Stability of the combination of the viscous contact wave and the rarefaction wave to the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 197 (2010), 89-116.
|
[14]
|
F. M. Huang, A. Matsumura and Z. P. Xin, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Rat. Mech. Anal., 179 (2006), 55-77.
|
[15]
|
F. M. Huang, Y. Wang and T. Yang, Hydrodynamic limit of the Boltzmann equation with contact discontinuities, Comm. Math. Phy., 295 (2010), 293-326.
|
[16]
|
F. M. Huang, Z. P. Xin and T. Yang, Contact discontinuities with general perturbation for gas motion, Adv. Math., 219 (2008), 1246-1297.
|
[17]
|
S. Jiang, G. X. Ni and W. J. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equiations of one-dimensional compressible heat-conducting fluids, SIAM J. Math. Anal., 38 (2006), 368-384.
|
[18]
|
M. Lachowicz, On the initial layer and existence theorem for the nonlinear Boltzmann equation, Math. Methods Appl.Sci., 9 (1987), 342-366.
|
[19]
|
T. Liu, T. Yang, and S. H. Yu, Energy method for the Boltzmann equation, Physica D, 188 (2004), 178-192.
|
[20]
|
T. Liu, T. Yang, S. H. Yu and H. J. Zhao, Nonlinear stability of rarefaction waves for the Boltzmann equation, Arch. Rat. Mech. Anal., 181 (2006), 333-371.
|
[21]
|
T. Liu and S. H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Commun. Math. Phys., 246 (2004), 133-179.
|
[22]
|
S. X. Ma, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations, J. Diff. Eqs., 248 (2010), 95-110.
|
[23]
|
A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.
|
[24]
|
T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Commun. Math. Phys., 61 (1978), 119-148.
|
[25]
|
J. Smoller, "Shock Waves and Reaction-Diffusion Equations," 2nd edition, Springer-Verlag, New York, 1994.
|
[26]
|
S. Ukai and K. Asano, The Euler limit and the initial layer of the nonlinear Boltzmann equation, Hokkaido Math. J., 12 (1983), 303-324.
|
[27]
|
S. Ukai, T. Yang and H. J. Zhao, Global solutions to the Boltzmann equation with external forces, Analysis and Applications, 3 (2005), 157-193.
|
[28]
|
H. Y. Wang, Viscous limits for piecewise smooth solutions of the p-system, J. Math. Anal. Appl., 299 (2004), 411-432.
|
[29]
|
Y. Wang, Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock, Acta Mathematica Scientia Ser. B, 28 (2008), 727-748.
|
[30]
|
Z. P. Xin, Zero dissipation limit to rarefaction waves for the one-dimentional Navier-Stokes equations of compressible isentropic gases, Commun. Pure Appl. Math, XLVI (1993), 621-665.
|
[31]
|
Z. P. Xin and H. H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations, J. Diff. Eqs., 249 (2010), 827-871.
|
[32]
|
S. H. Yu, Hydrodynamic limits with shock waves of the Boltzmann equations, Commun. Pure Appl. Math, 58 (2005), 409-443.
|