December  2010, 3(4): 685-728. doi: 10.3934/krm.2010.3.685

Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity

1. 

Institute of Applied Mathematics, AMSS and Hua Loo-Keng Key Laboratory of Mathematics, Academia Sinica, Beijing 100190

2. 

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

Received  August 2010 Revised  October 2010 Published  October 2010

Fluid dynamic limit to compressible Euler equations from compressible Navier-Stokes equations and Boltzmann equation has been an active topic with limited success so far. In this paper, we consider the case when the solution of the Euler equations is a Riemann solution consisting two rarefaction waves and a contact discontinuity and prove this limit for both Navier-Stokes equations and the Boltzmann equation when the viscosity, heat conductivity coefficients and the Knudsen number tend to zero respectively. In addition, the uniform convergence rates in terms of the above physical parameters are also obtained. It is noted that this is the first rigorous proof of this limit for a Riemann solution with superposition of three waves even though the fluid dynamic limit for a single wave has been proved.
Citation: Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685
References:
[1]

F. V. Atkinson and L. A. Peletier, Similarity solutions of the nonlinear diffusion equation,, Arch. Rat. Mech. Anal., 54 (1974), 373.   Google Scholar

[2]

L. Boltzmann, (translated by Stephen G. Brush), "Lectures on Gas Theory,", Dover Publications, (1964).   Google Scholar

[3]

R. E. Caflish, The fluid dynamical limit of the nonlinear Boltzmann equation,, Comm. Pure Appl. Math., 33 (1980), 491.   Google Scholar

[4]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Springer-Verlag, (1994).   Google Scholar

[5]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,", 3rd edition, (1990).   Google Scholar

[6]

C. T. Duyn and L. A. Peletier, A class of similarity solution of the nonlinear diffusion equation,, Nonlinear Analysis, 1 (1977), 223.   Google Scholar

[7]

R. Esposito and M. Pulvirenti, From particle to fluids,, in, III (2004), 1.   Google Scholar

[8]

F. Golse, B. Perthame and C. Sulem, On a boundary layer problem for the nonlinear Boltzmann equation,, Arch. Ration. Mech. Anal., 103 (1986), 81.   Google Scholar

[9]

J. Goodman and Z. P. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws,, Arch. Rational Mech. Anal., 121 (1992), 235.   Google Scholar

[10]

H. Grad, "Asymptotic Theory of the Boltzmann Equation II,", in, 1 (1963), 26.   Google Scholar

[11]

Y. Guo, The Boltzmann equation in the whole space,, Indiana Univ. Math. J., 53 (2004), 1081.   Google Scholar

[12]

D. Hoff and T. P. Liu, The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data,, India. Univ. Math. J., 36 (1989), 861.   Google Scholar

[13]

F. M. Huang, J. Li and A. Matsumura, Stability of the combination of the viscous contact wave and the rarefaction wave to the compressible Navier-Stokes equations,, Arch. Ration. Mech. Anal., 197 (2010), 89.   Google Scholar

[14]

F. M. Huang, A. Matsumura and Z. P. Xin, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations,, Arch. Rat. Mech. Anal., 179 (2006), 55.   Google Scholar

[15]

F. M. Huang, Y. Wang and T. Yang, Hydrodynamic limit of the Boltzmann equation with contact discontinuities,, Comm. Math. Phy., 295 (2010), 293.   Google Scholar

[16]

F. M. Huang, Z. P. Xin and T. Yang, Contact discontinuities with general perturbation for gas motion,, Adv. Math., 219 (2008), 1246.   Google Scholar

[17]

S. Jiang, G. X. Ni and W. J. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equiations of one-dimensional compressible heat-conducting fluids,, SIAM J. Math. Anal., 38 (2006), 368.   Google Scholar

[18]

M. Lachowicz, On the initial layer and existence theorem for the nonlinear Boltzmann equation,, Math. Methods Appl.Sci., 9 (1987), 342.   Google Scholar

[19]

T. Liu, T. Yang, and S. H. Yu, Energy method for the Boltzmann equation,, Physica D, 188 (2004), 178.   Google Scholar

[20]

T. Liu, T. Yang, S. H. Yu and H. J. Zhao, Nonlinear stability of rarefaction waves for the Boltzmann equation,, Arch. Rat. Mech. Anal., 181 (2006), 333.   Google Scholar

[21]

T. Liu and S. H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles,, Commun. Math. Phys., 246 (2004), 133.   Google Scholar

[22]

S. X. Ma, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations,, J. Diff. Eqs., 248 (2010), 95.   Google Scholar

[23]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 3 (1986), 1.   Google Scholar

[24]

T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation,, Commun. Math. Phys., 61 (1978), 119.   Google Scholar

[25]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", 2nd edition, (1994).   Google Scholar

[26]

S. Ukai and K. Asano, The Euler limit and the initial layer of the nonlinear Boltzmann equation,, Hokkaido Math. J., 12 (1983), 303.   Google Scholar

[27]

S. Ukai, T. Yang and H. J. Zhao, Global solutions to the Boltzmann equation with external forces,, Analysis and Applications, 3 (2005), 157.   Google Scholar

[28]

H. Y. Wang, Viscous limits for piecewise smooth solutions of the p-system,, J. Math. Anal. Appl., 299 (2004), 411.   Google Scholar

[29]

Y. Wang, Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock,, Acta Mathematica Scientia Ser. B, 28 (2008), 727.   Google Scholar

[30]

Z. P. Xin, Zero dissipation limit to rarefaction waves for the one-dimentional Navier-Stokes equations of compressible isentropic gases,, Commun. Pure Appl. Math, XLVI (1993), 621.   Google Scholar

[31]

Z. P. Xin and H. H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations,, J. Diff. Eqs., 249 (2010), 827.   Google Scholar

[32]

S. H. Yu, Hydrodynamic limits with shock waves of the Boltzmann equations,, Commun. Pure Appl. Math, 58 (2005), 409.   Google Scholar

show all references

References:
[1]

F. V. Atkinson and L. A. Peletier, Similarity solutions of the nonlinear diffusion equation,, Arch. Rat. Mech. Anal., 54 (1974), 373.   Google Scholar

[2]

L. Boltzmann, (translated by Stephen G. Brush), "Lectures on Gas Theory,", Dover Publications, (1964).   Google Scholar

[3]

R. E. Caflish, The fluid dynamical limit of the nonlinear Boltzmann equation,, Comm. Pure Appl. Math., 33 (1980), 491.   Google Scholar

[4]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Springer-Verlag, (1994).   Google Scholar

[5]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-Uniform Gases,", 3rd edition, (1990).   Google Scholar

[6]

C. T. Duyn and L. A. Peletier, A class of similarity solution of the nonlinear diffusion equation,, Nonlinear Analysis, 1 (1977), 223.   Google Scholar

[7]

R. Esposito and M. Pulvirenti, From particle to fluids,, in, III (2004), 1.   Google Scholar

[8]

F. Golse, B. Perthame and C. Sulem, On a boundary layer problem for the nonlinear Boltzmann equation,, Arch. Ration. Mech. Anal., 103 (1986), 81.   Google Scholar

[9]

J. Goodman and Z. P. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws,, Arch. Rational Mech. Anal., 121 (1992), 235.   Google Scholar

[10]

H. Grad, "Asymptotic Theory of the Boltzmann Equation II,", in, 1 (1963), 26.   Google Scholar

[11]

Y. Guo, The Boltzmann equation in the whole space,, Indiana Univ. Math. J., 53 (2004), 1081.   Google Scholar

[12]

D. Hoff and T. P. Liu, The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data,, India. Univ. Math. J., 36 (1989), 861.   Google Scholar

[13]

F. M. Huang, J. Li and A. Matsumura, Stability of the combination of the viscous contact wave and the rarefaction wave to the compressible Navier-Stokes equations,, Arch. Ration. Mech. Anal., 197 (2010), 89.   Google Scholar

[14]

F. M. Huang, A. Matsumura and Z. P. Xin, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations,, Arch. Rat. Mech. Anal., 179 (2006), 55.   Google Scholar

[15]

F. M. Huang, Y. Wang and T. Yang, Hydrodynamic limit of the Boltzmann equation with contact discontinuities,, Comm. Math. Phy., 295 (2010), 293.   Google Scholar

[16]

F. M. Huang, Z. P. Xin and T. Yang, Contact discontinuities with general perturbation for gas motion,, Adv. Math., 219 (2008), 1246.   Google Scholar

[17]

S. Jiang, G. X. Ni and W. J. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equiations of one-dimensional compressible heat-conducting fluids,, SIAM J. Math. Anal., 38 (2006), 368.   Google Scholar

[18]

M. Lachowicz, On the initial layer and existence theorem for the nonlinear Boltzmann equation,, Math. Methods Appl.Sci., 9 (1987), 342.   Google Scholar

[19]

T. Liu, T. Yang, and S. H. Yu, Energy method for the Boltzmann equation,, Physica D, 188 (2004), 178.   Google Scholar

[20]

T. Liu, T. Yang, S. H. Yu and H. J. Zhao, Nonlinear stability of rarefaction waves for the Boltzmann equation,, Arch. Rat. Mech. Anal., 181 (2006), 333.   Google Scholar

[21]

T. Liu and S. H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles,, Commun. Math. Phys., 246 (2004), 133.   Google Scholar

[22]

S. X. Ma, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations,, J. Diff. Eqs., 248 (2010), 95.   Google Scholar

[23]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas,, Japan J. Appl. Math., 3 (1986), 1.   Google Scholar

[24]

T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation,, Commun. Math. Phys., 61 (1978), 119.   Google Scholar

[25]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", 2nd edition, (1994).   Google Scholar

[26]

S. Ukai and K. Asano, The Euler limit and the initial layer of the nonlinear Boltzmann equation,, Hokkaido Math. J., 12 (1983), 303.   Google Scholar

[27]

S. Ukai, T. Yang and H. J. Zhao, Global solutions to the Boltzmann equation with external forces,, Analysis and Applications, 3 (2005), 157.   Google Scholar

[28]

H. Y. Wang, Viscous limits for piecewise smooth solutions of the p-system,, J. Math. Anal. Appl., 299 (2004), 411.   Google Scholar

[29]

Y. Wang, Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock,, Acta Mathematica Scientia Ser. B, 28 (2008), 727.   Google Scholar

[30]

Z. P. Xin, Zero dissipation limit to rarefaction waves for the one-dimentional Navier-Stokes equations of compressible isentropic gases,, Commun. Pure Appl. Math, XLVI (1993), 621.   Google Scholar

[31]

Z. P. Xin and H. H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations,, J. Diff. Eqs., 249 (2010), 827.   Google Scholar

[32]

S. H. Yu, Hydrodynamic limits with shock waves of the Boltzmann equations,, Commun. Pure Appl. Math, 58 (2005), 409.   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[9]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[10]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[11]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (34)

Other articles
by authors

[Back to Top]