 Previous Article
 KRM Home
 This Issue

Next Article
Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity
1D VlasovPoisson equations with electron sheet initial data
1.  Department of Mathematics, University of Wisconsin, Madison, WI 53706, United States 
References:
show all references
References:
[1] 
Dongfen Bian, Huimin Liu, Xueke Pu. Modulation approximation for the quantum EulerPoisson equation. Discrete and Continuous Dynamical Systems  B, 2021, 26 (8) : 43754405. doi: 10.3934/dcdsb.2020292 
[2] 
Jean Dolbeault. An introduction to kinetic equations: the VlasovPoisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361380. doi: 10.3934/dcds.2002.8.361 
[3] 
Katherine Zhiyuan Zhang. Focusing solutions of the VlasovPoisson system. Kinetic and Related Models, 2019, 12 (6) : 13131327. doi: 10.3934/krm.2019051 
[4] 
A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified EulerPoisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515529. doi: 10.3934/dcds.2007.19.515 
[5] 
Jianwei Yang, Dongling Li, Xiao Yang. On the quasineutral limit for the compressible EulerPoisson equations. Discrete and Continuous Dynamical Systems  B, 2022 doi: 10.3934/dcdsb.2022020 
[6] 
Yeping Li. Existence and some limit analysis of stationary solutions for a multidimensional bipolar EulerPoisson system. Discrete and Continuous Dynamical Systems  B, 2011, 16 (1) : 345360. doi: 10.3934/dcdsb.2011.16.345 
[7] 
Ming Mei, Yong Wang. Stability of stationary waves for full EulerPoisson system in multidimensional space. Communications on Pure and Applied Analysis, 2012, 11 (5) : 17751807. doi: 10.3934/cpaa.2012.11.1775 
[8] 
Zhigang Wu, Weike Wang. Pointwise estimates of solutions for the EulerPoisson equations with damping in multidimensions. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 11011117. doi: 10.3934/dcds.2010.26.1101 
[9] 
Yongcai Geng. Singularity formation for relativistic Euler and EulerPoisson equations with repulsive force. Communications on Pure and Applied Analysis, 2015, 14 (2) : 549564. doi: 10.3934/cpaa.2015.14.549 
[10] 
Blanca Ayuso, José A. Carrillo, ChiWang Shu. Discontinuous Galerkin methods for the onedimensional VlasovPoisson system. Kinetic and Related Models, 2011, 4 (4) : 955989. doi: 10.3934/krm.2011.4.955 
[11] 
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a VlasovPoisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729742. doi: 10.3934/krm.2012.5.729 
[12] 
Jack Schaeffer. Global existence for the VlasovPoisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129153. doi: 10.3934/krm.2012.5.129 
[13] 
Gang Li, Xianwen Zhang. A VlasovPoisson plasma of infinite mass with a point charge. Kinetic and Related Models, 2018, 11 (2) : 303336. doi: 10.3934/krm.2018015 
[14] 
Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the VlasovPoisson system with a point charge. Kinetic and Related Models, 2018, 11 (6) : 12771299. doi: 10.3934/krm.2018050 
[15] 
Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional VlasovPoisson system with steady spatial asymptotics. Kinetic and Related Models, 2017, 10 (4) : 9771009. doi: 10.3934/krm.2017039 
[16] 
Meixia Xiao, Xianwen Zhang. On global solutions to the VlasovPoisson system with radiation damping. Kinetic and Related Models, 2018, 11 (5) : 11831209. doi: 10.3934/krm.2018046 
[17] 
Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary VlasovPoisson plasma configurations. Kinetic and Related Models, 2021, 14 (2) : 257282. doi: 10.3934/krm.2021004 
[18] 
Jack Schaeffer. On time decay for the spherically symmetric VlasovPoisson system. Kinetic and Related Models, 2022, 15 (4) : 721727. doi: 10.3934/krm.2021021 
[19] 
Hyung Ju Hwang, Juhi Jang. On the VlasovPoissonFokkerPlanck equation near Maxwellian. Discrete and Continuous Dynamical Systems  B, 2013, 18 (3) : 681691. doi: 10.3934/dcdsb.2013.18.681 
[20] 
Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the VlasovPoissonBoltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 1333. doi: 10.3934/dcds.2009.24.13 
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]