-
Previous Article
Bounded solutions of the Boltzmann equation in the whole space
- KRM Home
- This Issue
-
Next Article
Preface
Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type
1. | Department of Mathematics and Statistics, University of Victoria, PO BOX 3060 STN CSC, Victoria, BC V8W 3R4, Canada, Canada, Canada |
References:
[1] |
Invent. Math., 158 (2004), 227-260.
doi: 10.1007/s00222-004-0367-2. |
[2] |
Bulletin of the Japanese Society of Scientific Fisheries, 48 (1982), 1081-1088. Google Scholar |
[3] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behaviour depends on topological rather than metric distance: Evidence from a field study,, Preprint, (). Google Scholar |
[4] |
Nonlinear Anal., 32 (1998), 891-933
doi: 10.1016/S0362-546X(97)00536-1. |
[5] |
J. A. Canizo, J. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion,, Math. Mod. Meth. Appl. Sci. (to appear), (). Google Scholar |
[6] |
Kinetic and Related Models, 2 (2009), 363-378.
doi: 10.3934/krm.2009.2.363. |
[7] |
SIAM J. Math. Anal., 42 (2010), 218-219.
doi: 10.1137/090757290. |
[8] |
in G. Naldi, L. Pareshi and G. Toscani (eds). Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Series Modelling and Simulation in Science and Technology, Birkha\"user (2010), 297-336.
doi: 10.1007/978-0-8176-4946-3_12. |
[9] |
Math. Mod. Meth. Appl. Sci., 20 (2010), 1533-1552.
doi: 10.1142/S0218202510004684. |
[10] |
J. Theor. Biol., 218 (2002), 1-11.
doi: 10.1006/jtbi.2002.3065. |
[11] |
Japan J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[12] |
IEEE Trans. Automat. Control., 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[13] |
Math. Mod. Meth. Appl. Sci., 18 (2008), 1193-1215.
doi: 10.1142/S0218202508003005. |
[14] |
Funct. Anal. Appl., 13 (1979), 115-123.
doi: 10.1007/BF01077243. |
[15] |
Russ. Acad. Sci. Sb. Math., 383 (1995). |
[16] |
H. Hildenbrandt, C. Carere and C. K. Hemelrijk, Self-organized aerial displays of thousands of starlings: A model,, Behavioral Ecology (to appear)., (). Google Scholar |
[17] |
Ethology, 114 (2008), 245-254.
doi: 10.1111/j.1439-0310.2007.01459.x. |
[18] |
Behavioral Ecology, 16 (2005), 178-187.
doi: 10.1093/beheco/arh149. |
[19] |
J. Theor. Biol., 156 (1992), 365-385.
doi: 10.1016/S0022-5193(05)80681-2. |
[20] |
Artificial Life, 9 (2003), 237253.
doi: 10.1162/106454603322392451. |
[21] |
Phys. rev. Lett., 96 (2006), 104302-1/4. Google Scholar |
[22] |
Commun. Math. Sci., 7 (2009), 297-325. |
[23] |
Kinetic and Related models, 1 (2008), 415-435. |
[24] |
Phys. Rev. Lett. E., 63 (2000), 017101-1/4. Google Scholar |
[25] |
Bull Math Biol., 71 (2008), 352-382.
doi: 10.1007/s11538-008-9365-7. |
[26] |
Physica D., 237 (2008), 699-720.
doi: 10.1016/j.physd.2007.10.009. |
[27] |
Graduate Studies in Math, 75 (2006), AMS. |
[28] |
Trans. Fluid Dynamics, 18 (1997), 663-678. Google Scholar |
[29] |
In: "Kinetic Theories and the Boltzmann Equation" (Montecatini 1981), Lecture Notes in Math., Springer Verlag Berlin, (1984), 60-110. |
[30] |
Science, 294 (1999), 99-101.
doi: 10.1126/science.284.5411.99. |
[31] |
Physical Review E., 58 (1998), 4828-2858.
doi: 10.1103/PhysRevE.58.4828. |
[32] |
Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |
[33] |
Graduate Studies in Math., 58 (2003), AMS. |
show all references
References:
[1] |
Invent. Math., 158 (2004), 227-260.
doi: 10.1007/s00222-004-0367-2. |
[2] |
Bulletin of the Japanese Society of Scientific Fisheries, 48 (1982), 1081-1088. Google Scholar |
[3] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behaviour depends on topological rather than metric distance: Evidence from a field study,, Preprint, (). Google Scholar |
[4] |
Nonlinear Anal., 32 (1998), 891-933
doi: 10.1016/S0362-546X(97)00536-1. |
[5] |
J. A. Canizo, J. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion,, Math. Mod. Meth. Appl. Sci. (to appear), (). Google Scholar |
[6] |
Kinetic and Related Models, 2 (2009), 363-378.
doi: 10.3934/krm.2009.2.363. |
[7] |
SIAM J. Math. Anal., 42 (2010), 218-219.
doi: 10.1137/090757290. |
[8] |
in G. Naldi, L. Pareshi and G. Toscani (eds). Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Series Modelling and Simulation in Science and Technology, Birkha\"user (2010), 297-336.
doi: 10.1007/978-0-8176-4946-3_12. |
[9] |
Math. Mod. Meth. Appl. Sci., 20 (2010), 1533-1552.
doi: 10.1142/S0218202510004684. |
[10] |
J. Theor. Biol., 218 (2002), 1-11.
doi: 10.1006/jtbi.2002.3065. |
[11] |
Japan J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[12] |
IEEE Trans. Automat. Control., 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[13] |
Math. Mod. Meth. Appl. Sci., 18 (2008), 1193-1215.
doi: 10.1142/S0218202508003005. |
[14] |
Funct. Anal. Appl., 13 (1979), 115-123.
doi: 10.1007/BF01077243. |
[15] |
Russ. Acad. Sci. Sb. Math., 383 (1995). |
[16] |
H. Hildenbrandt, C. Carere and C. K. Hemelrijk, Self-organized aerial displays of thousands of starlings: A model,, Behavioral Ecology (to appear)., (). Google Scholar |
[17] |
Ethology, 114 (2008), 245-254.
doi: 10.1111/j.1439-0310.2007.01459.x. |
[18] |
Behavioral Ecology, 16 (2005), 178-187.
doi: 10.1093/beheco/arh149. |
[19] |
J. Theor. Biol., 156 (1992), 365-385.
doi: 10.1016/S0022-5193(05)80681-2. |
[20] |
Artificial Life, 9 (2003), 237253.
doi: 10.1162/106454603322392451. |
[21] |
Phys. rev. Lett., 96 (2006), 104302-1/4. Google Scholar |
[22] |
Commun. Math. Sci., 7 (2009), 297-325. |
[23] |
Kinetic and Related models, 1 (2008), 415-435. |
[24] |
Phys. Rev. Lett. E., 63 (2000), 017101-1/4. Google Scholar |
[25] |
Bull Math Biol., 71 (2008), 352-382.
doi: 10.1007/s11538-008-9365-7. |
[26] |
Physica D., 237 (2008), 699-720.
doi: 10.1016/j.physd.2007.10.009. |
[27] |
Graduate Studies in Math, 75 (2006), AMS. |
[28] |
Trans. Fluid Dynamics, 18 (1997), 663-678. Google Scholar |
[29] |
In: "Kinetic Theories and the Boltzmann Equation" (Montecatini 1981), Lecture Notes in Math., Springer Verlag Berlin, (1984), 60-110. |
[30] |
Science, 294 (1999), 99-101.
doi: 10.1126/science.284.5411.99. |
[31] |
Physical Review E., 58 (1998), 4828-2858.
doi: 10.1103/PhysRevE.58.4828. |
[32] |
Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |
[33] |
Graduate Studies in Math., 58 (2003), AMS. |
[1] |
Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015 |
[2] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[3] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[4] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[5] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[6] |
Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021018 |
[7] |
Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253 |
[8] |
Lifen Jia, Wei Dai. Uncertain spring vibration equation. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021073 |
[9] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[10] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[11] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[12] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[13] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[14] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[15] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[16] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[17] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[18] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[19] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[20] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]