Advanced Search
Article Contents
Article Contents

Semiclassical limit in a simplified quantum energy-transport model for semiconductors

Abstract Related Papers Cited by
  • The semiclassical limit in a quantum energy-transport model for semiconductors is proved. The system consists of a nonlinear parabolic fourth-order equation for the electron density, including temperature gradients; a degenerate elliptic heat equation for the electron temperature; and the Poisson equation for the electric potential. The equations are solved in a bounded domain with periodic boundary conditions. The asymptotic limit is based on a priori estimates independent of the scaled Planck constant, obtained from entropy functionals, on the use of Gagliardo-Nirenberg inequalities, and weak compactness methods.
    Mathematics Subject Classification: Primary: 35B25, 35J40, 35Q40; Secondary: 82D37.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Ancona, Diffusion-drift modeling of strong inversion layers, COMPEL, 6 (1987), 11-18.


    A. Asenov, G. Slavcheva, A. Brown, J. Davies and S. Saini, Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: A 3-D density-gradient simulation study, IEEE Trans. Electron Dev., 48 (2001), 722-729.doi: 10.1109/16.915703.


    N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306-3333.doi: 10.1063/1.531567.


    L. Chen and M. Dreher, Quantum semiconductor models, in "Partial Differential Equations and Spectral Theory" (eds. M. Demuth, B.-W. Schulze and I. Witt), Operator Theory: Advances and Applications, 211 (2010), 1-72.


    L. Chen and Q.-C. Ju, Existence of weak solution and semiclassical limit for quantum drift-diffusion model, Z. Angew. Math. Phys., 58 (2007), 1-15.doi: 10.1007/s00033-005-0051-4.


    L. Chen and Q.-C. Ju, The semiclassical limit in the quantum drift-diffusion equations with isentropic pressure, Chin. Ann. Math. Ser. B, 29 (2008), 369-384.doi: 10.1007/s11401-007-0314-9.


    R.-C. Chen and J.-L. Liu, A quantum corrected energy-transport model for nanoscale semiconductor devices, J. Comput. Phys., 204 (2005), 131-156.doi: 10.1016/j.jcp.2004.10.006.


    X.-Q. Chen and L. Chen, Initial time layer problem for quantum drift-diffusion model, J. Math. Anal. Appl., 343 (2008), 64-80.doi: 10.1016/j.jmaa.2008.01.015.


    P. Degond, S. Gallego and F. Méhats, On quantum hydrodynamic and quantum energy transport models, Commun. Math. Sci., 5 (2007), 887-908.


    P. Degond, S. Génieys and A. Jüngel, A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects, J. Math. Pures Appl. (9), 76 (1997), 991-1015.doi: 10.1016/S0021-7824(97)89980-1.


    P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118 (2005), 625-667.doi: 10.1007/s10955-004-8823-3.


    H. Doebner and G. Goldin, On a general nonlinear Schrödinger equation admitting diffusion currents, Phys. Lett. A, 162 (1992), 397-401.doi: 10.1016/0375-9601(92)90061-P.


    M. Dreher and A. Jüngel, Compact families of piecewise constant functions in $L^p(0,T;B)$, preprint, TU Wien, 2011.


    U. Gianazza, G. Savaré and G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Rat. Mech. Anal., 194 (2009), 133-220.doi: 10.1007/s00205-008-0186-5.


    H. Grubin and J. Kreskovsky, Quantum moment balance equations and resonant tunnelling structures, Solid-State Electr., 32 (1989), 1701.doi: 10.1016/0038-1101(89)90192-5.


    M. P. Gualdani, A. Jüngel and G. Toscani, A nonlinear fourth-order parabolic equation with nonhomogeneous boundary conditions, SIAM J. Math. Anal., 37 (2006), 1761-1779.doi: 10.1137/S0036141004444615.


    A. Jüngel, "Transport Equations for Semiconductors," Lect. Notes Phys., 773, Springer-Verlag, Berlin, 2009.


    A. Jüngel, Dissipative quantum fluid models, to appear in Revista Mat. Univ. Parma, 2011.


    A. Jüngel and D. Matthes, The Derrida-Lebowitz-Speer-Spohn equation: Existence, nonuniqueness, and decay rates of the solutions, SIAM J. Math. Anal., 39 (2008), 1996-2015.doi: 10.1137/060676878.


    A. Jüngel and J.-P. Milišić, A simplified quantum energy-transport model for semiconductors, Nonlin. Anal.: Real World Appl., 12 (2011), 1033-1046.doi: 10.1016/j.nonrwa.2010.08.026.


    A. Jüngel and R. Pinnau, Global non-negative solutions of a nonlinear fourth-order parabolic equation for quantum systems, SIAM J. Math. Anal., 32 (2000), 760-777.doi: 10.1137/S0036141099360269.


    M. Kostin, On the Schrödinger-Langevin equation, J. Chem. Phys., 57 (1972), 3589-3591.doi: 10.1063/1.1678812.


    P. Markowich, C. Ringhofer and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Vienna, 1990.doi: 10.1007/978-3-7091-6961-2.


    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.

  • 加载中

Article Metrics

HTML views() PDF downloads(71) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint