-
Previous Article
The Spherical Harmonics Expansion model coupled to the Poisson equation
- KRM Home
- This Issue
-
Next Article
Continuous limit of a crowd motion and herding model: Analysis and numerical simulations
Semiclassical limit in a simplified quantum energy-transport model for semiconductors
1. | Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China |
2. | School of Sciences,, Beijing University of Posts & Telecommunications, Beijing, 100876, China |
3. | Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien |
References:
[1] |
M. Ancona, Diffusion-drift modeling of strong inversion layers, COMPEL, 6 (1987), 11-18. |
[2] |
A. Asenov, G. Slavcheva, A. Brown, J. Davies and S. Saini, Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: A 3-D density-gradient simulation study, IEEE Trans. Electron Dev., 48 (2001), 722-729.
doi: 10.1109/16.915703. |
[3] |
N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306-3333.
doi: 10.1063/1.531567. |
[4] |
L. Chen and M. Dreher, Quantum semiconductor models, in "Partial Differential Equations and Spectral Theory" (eds. M. Demuth, B.-W. Schulze and I. Witt), Operator Theory: Advances and Applications, 211 (2010), 1-72. |
[5] |
L. Chen and Q.-C. Ju, Existence of weak solution and semiclassical limit for quantum drift-diffusion model, Z. Angew. Math. Phys., 58 (2007), 1-15.
doi: 10.1007/s00033-005-0051-4. |
[6] |
L. Chen and Q.-C. Ju, The semiclassical limit in the quantum drift-diffusion equations with isentropic pressure, Chin. Ann. Math. Ser. B, 29 (2008), 369-384.
doi: 10.1007/s11401-007-0314-9. |
[7] |
R.-C. Chen and J.-L. Liu, A quantum corrected energy-transport model for nanoscale semiconductor devices, J. Comput. Phys., 204 (2005), 131-156.
doi: 10.1016/j.jcp.2004.10.006. |
[8] |
X.-Q. Chen and L. Chen, Initial time layer problem for quantum drift-diffusion model, J. Math. Anal. Appl., 343 (2008), 64-80.
doi: 10.1016/j.jmaa.2008.01.015. |
[9] |
P. Degond, S. Gallego and F. Méhats, On quantum hydrodynamic and quantum energy transport models, Commun. Math. Sci., 5 (2007), 887-908. |
[10] |
P. Degond, S. Génieys and A. Jüngel, A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects, J. Math. Pures Appl. (9), 76 (1997), 991-1015.
doi: 10.1016/S0021-7824(97)89980-1. |
[11] |
P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118 (2005), 625-667.
doi: 10.1007/s10955-004-8823-3. |
[12] |
H. Doebner and G. Goldin, On a general nonlinear Schrödinger equation admitting diffusion currents, Phys. Lett. A, 162 (1992), 397-401.
doi: 10.1016/0375-9601(92)90061-P. |
[13] |
M. Dreher and A. Jüngel, Compact families of piecewise constant functions in $L^p(0,T;B)$, preprint, TU Wien, 2011. |
[14] |
U. Gianazza, G. Savaré and G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Rat. Mech. Anal., 194 (2009), 133-220.
doi: 10.1007/s00205-008-0186-5. |
[15] |
H. Grubin and J. Kreskovsky, Quantum moment balance equations and resonant tunnelling structures, Solid-State Electr., 32 (1989), 1701.
doi: 10.1016/0038-1101(89)90192-5. |
[16] |
M. P. Gualdani, A. Jüngel and G. Toscani, A nonlinear fourth-order parabolic equation with nonhomogeneous boundary conditions, SIAM J. Math. Anal., 37 (2006), 1761-1779.
doi: 10.1137/S0036141004444615. |
[17] |
A. Jüngel, "Transport Equations for Semiconductors," Lect. Notes Phys., 773, Springer-Verlag, Berlin, 2009. |
[18] |
A. Jüngel, Dissipative quantum fluid models, to appear in Revista Mat. Univ. Parma, 2011. |
[19] |
A. Jüngel and D. Matthes, The Derrida-Lebowitz-Speer-Spohn equation: Existence, nonuniqueness, and decay rates of the solutions, SIAM J. Math. Anal., 39 (2008), 1996-2015.
doi: 10.1137/060676878. |
[20] |
A. Jüngel and J.-P. Milišić, A simplified quantum energy-transport model for semiconductors, Nonlin. Anal.: Real World Appl., 12 (2011), 1033-1046.
doi: 10.1016/j.nonrwa.2010.08.026. |
[21] |
A. Jüngel and R. Pinnau, Global non-negative solutions of a nonlinear fourth-order parabolic equation for quantum systems, SIAM J. Math. Anal., 32 (2000), 760-777.
doi: 10.1137/S0036141099360269. |
[22] |
M. Kostin, On the Schrödinger-Langevin equation, J. Chem. Phys., 57 (1972), 3589-3591.
doi: 10.1063/1.1678812. |
[23] |
P. Markowich, C. Ringhofer and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Vienna, 1990.
doi: 10.1007/978-3-7091-6961-2. |
[24] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96. |
show all references
References:
[1] |
M. Ancona, Diffusion-drift modeling of strong inversion layers, COMPEL, 6 (1987), 11-18. |
[2] |
A. Asenov, G. Slavcheva, A. Brown, J. Davies and S. Saini, Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: A 3-D density-gradient simulation study, IEEE Trans. Electron Dev., 48 (2001), 722-729.
doi: 10.1109/16.915703. |
[3] |
N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306-3333.
doi: 10.1063/1.531567. |
[4] |
L. Chen and M. Dreher, Quantum semiconductor models, in "Partial Differential Equations and Spectral Theory" (eds. M. Demuth, B.-W. Schulze and I. Witt), Operator Theory: Advances and Applications, 211 (2010), 1-72. |
[5] |
L. Chen and Q.-C. Ju, Existence of weak solution and semiclassical limit for quantum drift-diffusion model, Z. Angew. Math. Phys., 58 (2007), 1-15.
doi: 10.1007/s00033-005-0051-4. |
[6] |
L. Chen and Q.-C. Ju, The semiclassical limit in the quantum drift-diffusion equations with isentropic pressure, Chin. Ann. Math. Ser. B, 29 (2008), 369-384.
doi: 10.1007/s11401-007-0314-9. |
[7] |
R.-C. Chen and J.-L. Liu, A quantum corrected energy-transport model for nanoscale semiconductor devices, J. Comput. Phys., 204 (2005), 131-156.
doi: 10.1016/j.jcp.2004.10.006. |
[8] |
X.-Q. Chen and L. Chen, Initial time layer problem for quantum drift-diffusion model, J. Math. Anal. Appl., 343 (2008), 64-80.
doi: 10.1016/j.jmaa.2008.01.015. |
[9] |
P. Degond, S. Gallego and F. Méhats, On quantum hydrodynamic and quantum energy transport models, Commun. Math. Sci., 5 (2007), 887-908. |
[10] |
P. Degond, S. Génieys and A. Jüngel, A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects, J. Math. Pures Appl. (9), 76 (1997), 991-1015.
doi: 10.1016/S0021-7824(97)89980-1. |
[11] |
P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118 (2005), 625-667.
doi: 10.1007/s10955-004-8823-3. |
[12] |
H. Doebner and G. Goldin, On a general nonlinear Schrödinger equation admitting diffusion currents, Phys. Lett. A, 162 (1992), 397-401.
doi: 10.1016/0375-9601(92)90061-P. |
[13] |
M. Dreher and A. Jüngel, Compact families of piecewise constant functions in $L^p(0,T;B)$, preprint, TU Wien, 2011. |
[14] |
U. Gianazza, G. Savaré and G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Rat. Mech. Anal., 194 (2009), 133-220.
doi: 10.1007/s00205-008-0186-5. |
[15] |
H. Grubin and J. Kreskovsky, Quantum moment balance equations and resonant tunnelling structures, Solid-State Electr., 32 (1989), 1701.
doi: 10.1016/0038-1101(89)90192-5. |
[16] |
M. P. Gualdani, A. Jüngel and G. Toscani, A nonlinear fourth-order parabolic equation with nonhomogeneous boundary conditions, SIAM J. Math. Anal., 37 (2006), 1761-1779.
doi: 10.1137/S0036141004444615. |
[17] |
A. Jüngel, "Transport Equations for Semiconductors," Lect. Notes Phys., 773, Springer-Verlag, Berlin, 2009. |
[18] |
A. Jüngel, Dissipative quantum fluid models, to appear in Revista Mat. Univ. Parma, 2011. |
[19] |
A. Jüngel and D. Matthes, The Derrida-Lebowitz-Speer-Spohn equation: Existence, nonuniqueness, and decay rates of the solutions, SIAM J. Math. Anal., 39 (2008), 1996-2015.
doi: 10.1137/060676878. |
[20] |
A. Jüngel and J.-P. Milišić, A simplified quantum energy-transport model for semiconductors, Nonlin. Anal.: Real World Appl., 12 (2011), 1033-1046.
doi: 10.1016/j.nonrwa.2010.08.026. |
[21] |
A. Jüngel and R. Pinnau, Global non-negative solutions of a nonlinear fourth-order parabolic equation for quantum systems, SIAM J. Math. Anal., 32 (2000), 760-777.
doi: 10.1137/S0036141099360269. |
[22] |
M. Kostin, On the Schrödinger-Langevin equation, J. Chem. Phys., 57 (1972), 3589-3591.
doi: 10.1063/1.1678812. |
[23] |
P. Markowich, C. Ringhofer and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Vienna, 1990.
doi: 10.1007/978-3-7091-6961-2. |
[24] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96. |
[1] |
Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275 |
[2] |
Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure and Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617 |
[3] |
José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1 |
[4] |
Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037 |
[5] |
Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225 |
[6] |
Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic and Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955 |
[7] |
Zongming Guo, Long Wei. A fourth order elliptic equation with a singular nonlinearity. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2493-2508. doi: 10.3934/cpaa.2014.13.2493 |
[8] |
Zongming Guo, Long Wei. A perturbed fourth order elliptic equation with negative exponent. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4187-4205. doi: 10.3934/dcdsb.2018132 |
[9] |
Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang. Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4321-4335. doi: 10.3934/dcdss.2021108 |
[10] |
M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure and Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557 |
[11] |
Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170 |
[12] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284 |
[13] |
Luca Calatroni, Bertram Düring, Carola-Bibiane Schönlieb. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 931-957. doi: 10.3934/dcds.2014.34.931 |
[14] |
Wenjun Liu, Zhijing Chen, Zhiyu Tu. New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory. Electronic Research Archive, 2020, 28 (1) : 433-457. doi: 10.3934/era.2020025 |
[15] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021205 |
[16] |
Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4293-4320. doi: 10.3934/dcdss.2021122 |
[17] |
Ying Wen, Jiebao Sun, Zhichang Guo. A new anisotropic fourth-order diffusion equation model based on image features for image denoising. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022004 |
[18] |
Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2721-2757. doi: 10.3934/dcdsb.2021156 |
[19] |
Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227 |
[20] |
Harald Friedrich. Semiclassical and large quantum number limits of the Schrödinger equation. Conference Publications, 2003, 2003 (Special) : 288-294. doi: 10.3934/proc.2003.2003.288 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]