Citation: |
[1] |
D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains, SIAM J. Appl. Math., 66 (2006), 896-920.doi: 10.1137/040604625. |
[2] |
A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.doi: 10.1126/science.286.5439.509. |
[3] |
S. Battiston, D. Delli Gatti, M. Gallegati, B. Greenwald and J. E. Stiglitz, Credit chains and bankruptcy propagation in production networks, Journal of Economic Dynamics and Control, 31 (2007), 2061-2084.doi: 10.1016/j.jedc.2007.01.004. |
[4] |
D. Brockmann, Anomalous diffusion and the structure of human transportation networks, Eur. Phys. J. Special Topics, 157 (2008), 173-189.doi: 10.1140/epjst/e2008-00640-0. |
[5] |
C. Cercignani, I. Gamba and D. Levermore, A drift-collision balance for a Boltzmann- Poisson system in bounded domains, SIAM J. Appl. Math., 61 (2001), 1932-1958.doi: 10.1137/S0036139999360465. |
[6] |
C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994. |
[7] |
F. Della Rossa, C. D'Angelo and A. Quarteroni, A distributed model of traffic flows on extended regions, Networks and Heterogeneous Media 5 (2010), 525-544. |
[8] |
P. Degond and C. Ringhofer, Stochastic dynamics of long supply chains with random breakdowns, SIAM J. Applied Mathematics, 68 (2007), 59-79.doi: 10.1137/060674302. |
[9] |
A. Ern, A. Stephansen and P. Zunino, A discontinuous Galerkin method with weighted aver- ages for advection-diffusion equations with locally small and anisotropic diffusivity, IMA J. Numer. Anal., 29 (2009), 235-256.doi: 10.1093/imanum/drm050. |
[10] |
M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models," AIMS Series on Applied Mathematics, Vol. 1, American Institute of Mathematical Sciences, Springfield, MO, 2006. |
[11] |
S. Göttlich, M. Herty and C. Ringhofer, Optimization of order policies in supply networks, European Journal of Operational Research, 202 (2010), 456-465.doi: 10.1016/j.ejor.2009.05.028. |
[12] |
S. Göttlich, M. Herty and C. Ringhofer, Time-dependent order and distribution policies in supply networks, in "Progress in Industrial Mathematics at ECMI 2008," Mathematics in Industry, Vol. 15 (eds, J. Norbury, H. Ockendon and E. Wilson), 521-526, Springer, 2010. |
[13] |
W. H. S. C. Graves and D. B. Kletter, A dynamic model for requirements planning with application to supply chain optimization, Operations Research, 46 (1998), 35-49.doi: 10.1287/opre.46.3.S35. |
[14] |
D. Helbing, Traffic and related self-driven many-particle systems, Rev. Mod. Phys., 73 (2001), 1067-1141.doi: 10.1103/RevModPhys.73.1067. |
[15] |
E. W. Larsen, A generalized Boltzmann equation for "non-classical" particle transport, in "Joint International Topical Meeting on Mathematics and Computation and Supercomputing in Nuclear Applications" (M & C + SNA 2007), Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL, 2007. |
[16] |
E. W. Larsen and R. Vasques, A generalized linear Boltzmann equation for non-classical particle transport, Journal of Quantitative Spectroscopy and Radiative Transfer, 2010.doi: 10.1016/j.jqsrt.2010.07.003. |
[17] |
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345. |
[18] |
H. Missbauer, Aggregate order release planning for time varying demand, Int. J. Production Research, 40 (2002), 699-718.doi: 10.1080/00207540110090939. |
[19] |
K. Nagel, Particle hopping models and traffic flow theory, Physical Review E, 3 (1996), 4655-–4672.doi: 10.1103/PhysRevE.53.4655. |
[20] |
F. Poupaud, Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory, Z. Angew. Math. Mech., 72 (1992), 359-372.doi: 10.1002/zamm.19920720813. |
[21] |
D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442.doi: 10.1038/30918. |