\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ghost effect by curvature in planar Couette flow

Abstract Related Papers Cited by
  • We study a rarefied gas, described by the Boltzmann equation, between two coaxial rotating cylinders in the small Knudsen number regime. When the radius of the inner cylinder is suitably sent to infinity, the limiting evolution is expected to converge to a modified Couette flow which keeps memory of the vanishing curvature of the cylinders ( ghost effect [18]). In the $1$-d stationary case we prove the existence of a positive isolated $L_2$-solution to the Boltzmann equation and its convergence. This is obtained by means of a truncated bulk-boundary layer expansion which requires the study of a new Milne problem, and an estimate of the remainder based on a generalized spectral inequality.
    Mathematics Subject Classification: Primary: 82B40, 82C26; Secondary 76P05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability of the laminar solution of the Boltzmann equation for the Benard problem, Bull. Academia Sinica, 3 (2008), 51-97.

    [2]

    L. Arkeryd, R. Esposito, R. Marra and A. Nouri, Stability for Rayleigh-Benard convective solutions of the Boltzmann equation, Arch. Rat. Mech. Anal., 198 (2010), 125-187.doi: 10.1007/s00205-010-0292-z.

    [3]

    L. Arkeryd and A. Nouri, Asymptotic techniques for kinetic problems of Boltzmann type, Proceedings of the 3rd edition of the summer school in "Methods and Models of Kinetic Theory," Riv. Mat. Univ. Parma , 7 (2007), 1-74.

    [4]

    L. Arkeryd and A. Nouri, On a Taylor-Couette type bifurcation for the stationary nonlinear Boltzmann equation, Jour. Stat. Phys., 124 (2006), 401-443.doi: 10.1007/s10955-005-8008-8.

    [5]

    L. Arkeryd and A. Nouri, A large data existence result for the stationary Boltzmann equation in a cylindrical geometry, Arkiv för Matematik, 43 (2005), 29-50.doi: 10.1007/BF02383609.

    [6]

    L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting: Multiple, isolated $L^ q$ solutions and positivity, Jour. Stat. Phys., 118 (2005), 849-881.doi: 10.1007/s10955-004-2708-3.

    [7]

    A. V. Bobylev, Quasistationary Hydrodynamics for the Boltzmann equation, Jour. of Statistical Physics, 80 (1995), 1063-1083.doi: 10.1007/BF02179864.

    [8]

    S. Brull, Problem of evaporation-condensation for a two component gas in the slab, Kinetic and Related Models, 11 (2008), 185-221.

    [9]

    C. Cercignani, "The Boltzmann Equation and its Applications," Springer, New York, 1988.

    [10]

    C. Cercignani, R. Esposito and R. Marra, The Milne problem with a force term, Transport Theory Stat. Phys., 27 (1998), 1-33.doi: 10.1080/00411459808205139.

    [11]

    A. De Masi, R. Esposito and J. L. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Comm. Pure and Appl. Math., 42 (1989), 1189-1214.doi: 10.1002/cpa.3160420810.

    [12]

    R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamic limit of the stationary Boltzmann equation in a slab, Comm. Math. Phys., 160 (1994), 49-80.doi: 10.1007/BF02099789.

    [13]

    R. Esposito, J. L. Lebowitz and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation, Jour. Stat. Phys., 78 (1995), 389-412.doi: 10.1007/BF02183355.

    [14]

    R. Esposito, R. Marra and J. L. Lebowitz, Solutions to the Boltzmann equation in the Boussinesq regime, Jour. Stat. Phys., 90 (1998), 1129-1178.doi: 10.1023/A:1023223226585.

    [15]

    R. Esposito and M. Pulvirenti, "From Particles to Fluids," in "Handbook of Mathematical Fluid Dynamics," Vol. 3, D. Serre and F. Friedlander eds, Elsevier, 2004.

    [16]

    M. N. Kogan, V. S. Galkin and O. G. Fridlender, Stresses produced in gases by temperature and concentration inhomogeneities. New types of free convection, Sov. Phys. Usp., 19 (1976), 420-428.doi: 10.1070/PU1976v019n05ABEH005261.

    [17]

    N. B. Maslova, "Nonlinear Evolution Equations: Kinetic Approach," World Scientific, 1993.

    [18]

    Y. Sone, "Kinetic Theory and Fluid Dynamics," Birkhäuser Boston, 2002.

    [19]

    Y. Sone, "Molecular Gas Dynamics, Theory, Techniques, and Applications," World Scientific, Birkhäuser Boston, 2007.

    [20]

    Y. Sone and T. Doi, Ghost effect of infinitesimal curvature in the plane Couette flow of a gas in the continuum limit, Physics of Fluids, 16 (2004), 952-971.doi: 10.1063/1.1649738.

    [21]

    T. von Karman, "From Low-speed Aerodynamics to Astronautics," Pergamon Press, Oxford, 1963.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return