Advanced Search
Article Contents
Article Contents

Analysis of a diffusive effective mass model for nanowires

Abstract Related Papers Cited by
  • We propose in this paper to derive and analyze a self-consistent model describing the diffusive transport in a nanowire. From a physical point of view, it describes the electron transport in an ultra-scaled confined structure, taking into account the interactions of charged particles with phonons. The transport direction is assumed to be large compared to the wire section and is described by a drift-diffusion equation including effective quantities computed from a Bloch problem in the crystal lattice. The electrostatic potential solves a Poisson equation where the particle density couples on each energy band a two dimensional confinement density with the monodimensional transport density given by the Boltzmann statistics. On the one hand, we study the derivation of this Nanowire Drift-Diffusion Poisson model from a kinetic level description. On the other hand, we present an existence result for this model in a bounded domain.
    Mathematics Subject Classification: Primary: 35Q40, 76R99, 49K20, 82D80; Secondary: 81Q10.


    \begin{equation} \\ \end{equation}
  • [1]

    N. W. Ashcroft and N. D. Mermin, "Solid State Physics,'' Saunders College Publishing, 1976.


    J.-P. Aubin, Un théor\`eme de compacité, C. R. Acad. Sci. Paris, 256 (1963), 5042-5044.


    N. Ben Abdallah and L. Barletti, Quantum transport in crystals : Effective-mass theorem and k.p Hamiltonians, Comm. Math. Phys., 307 (2011), 567-607.


    N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors J. Math. Phys., 37 (1996), 3306-3333.doi: 10.1063/1.531567.


    N. Ben Abdallah, C. Jourdana and P. PietraAn effective mass model for the simulation of ultra-scaled confined devices, preprint, IMATI-CNR 10PV11/7/0.


    N. Ben Abdallah and F. Méhats, On a Vlasov-Schrödinger-Poisson model, Comm. Partial Differential Equations, 29 (2004), 173-206.


    N. Ben Abdallah and F. Méhats, Semiclassical analysis of the Schrödinger equation with a partially confining potential, J. Math. Pures Appl. (9), 84 (2005), 580-614.doi: 10.1016/j.matpur.2004.10.004.


    N. Ben Abdallah, F. Méhats and N. Vauchelet, Diffusive transport of partially quantized particles: Existence, uniqueness and long-time behaviour, Proc. Edinb. Math. Soc. (2), 49 (2006), 513-549.doi: 10.1017/S0013091504000987.


    N. Ben Abdallah and M. L. Tayeb, Diffusion approximation for the one dimensional Boltzmann-Poisson system, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1129-1142.doi: 10.3934/dcdsb.2004.4.1129.


    C. Heitzinger and C. Ringhofer, A transport equation for confined structures derived from the Boltzmann equation, Comm. Math. Sci., 9 (2011), 829-857.


    A. Henrot, "Extremum Problems for Eigenvalues of Elliptic Operators,'' Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.


    A. Jüngel, "Transport Equations for Semiconductors,'' Lecture Notes in Physics, 773, Springer-Verlag, Berlin, 2009.


    J.-L. Lions, "Équations Différentielles Opérationnelles et Problèmes aux Limites,'' Die Grundlehren der mathematischen Wissenschaften, Bd. 111, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961.


    P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations,'' Springer-Verlag, Vienna, 1990.doi: 10.1007/978-3-7091-6961-2.


    N. Masmoudi and M. L. Tayeb, Diffusion limit of a semiconductor Boltzmann-Poisson system, SIAM J. Math. Anal., 38 (2007), 1788-1807.doi: 10.1137/050630763.


    M. S. Mock, "Analysis of Mathematical Models of Semiconductor Devices,'' Advances in Numerical Computation Series, 3, Boole Press, Dún Laoghaire, 1983.


    P. Pietra and N. Vauchelet, Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET, J. Comp. Elec., 7 (2008), 52-65.doi: 10.1007/s10825-008-0253-z.


    F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis of boundary layers, Asymptotic Anal., 4 (1991), 293-317.


    N. Vauchelet, Diffusive limit of a two dimensional kinetic system of partially quantized particles, J. Stat. Phys., 139 (2010), 882-914.doi: 10.1007/s10955-010-9970-3.


    N. Vauchelet, Diffusive transport of partially quantized particles: $L\log L$ solutions, Math. Models Methods Appl. Sci., 18 (2008), 489-510.doi: 10.1142/S0218202508002759.


    T. Wenckebach, "Essential of Semiconductor Physics,'' Wiley, Chichester, 1999.

  • 加载中

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint