December  2011, 4(4): 1121-1142. doi: 10.3934/krm.2011.4.1121

Analysis of a diffusive effective mass model for nanowires

1. 

Istituto di Matematica Applicata e Tecnologie Informatiche CNR, via Ferrata 1, 27100 Pavia

2. 

UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, INRIA Paris-Rocquencourt, EPI MAMBA, F-75005, Paris, France

Received  May 2011 Revised  August 2011 Published  November 2011

We propose in this paper to derive and analyze a self-consistent model describing the diffusive transport in a nanowire. From a physical point of view, it describes the electron transport in an ultra-scaled confined structure, taking into account the interactions of charged particles with phonons. The transport direction is assumed to be large compared to the wire section and is described by a drift-diffusion equation including effective quantities computed from a Bloch problem in the crystal lattice. The electrostatic potential solves a Poisson equation where the particle density couples on each energy band a two dimensional confinement density with the monodimensional transport density given by the Boltzmann statistics. On the one hand, we study the derivation of this Nanowire Drift-Diffusion Poisson model from a kinetic level description. On the other hand, we present an existence result for this model in a bounded domain.
Citation: Clément Jourdana, Nicolas Vauchelet. Analysis of a diffusive effective mass model for nanowires. Kinetic & Related Models, 2011, 4 (4) : 1121-1142. doi: 10.3934/krm.2011.4.1121
References:
[1]

N. W. Ashcroft and N. D. Mermin, "Solid State Physics,'', Saunders College Publishing, (1976).   Google Scholar

[2]

J.-P. Aubin, Un théor\`eme de compacité,, C. R. Acad. Sci. Paris, 256 (1963), 5042.   Google Scholar

[3]

N. Ben Abdallah and L. Barletti, Quantum transport in crystals : Effective-mass theorem and k.p Hamiltonians,, Comm. Math. Phys., 307 (2011), 567.   Google Scholar

[4]

N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306.  doi: 10.1063/1.531567.  Google Scholar

[5]

N. Ben Abdallah, C. Jourdana and P. Pietra, An effective mass model for the simulation of ultra-scaled confined devices,, preprint, ().   Google Scholar

[6]

N. Ben Abdallah and F. Méhats, On a Vlasov-Schrödinger-Poisson model,, Comm. Partial Differential Equations, 29 (2004), 173.   Google Scholar

[7]

N. Ben Abdallah and F. Méhats, Semiclassical analysis of the Schrödinger equation with a partially confining potential,, J. Math. Pures Appl. (9), 84 (2005), 580.  doi: 10.1016/j.matpur.2004.10.004.  Google Scholar

[8]

N. Ben Abdallah, F. Méhats and N. Vauchelet, Diffusive transport of partially quantized particles: Existence, uniqueness and long-time behaviour,, Proc. Edinb. Math. Soc. (2), 49 (2006), 513.  doi: 10.1017/S0013091504000987.  Google Scholar

[9]

N. Ben Abdallah and M. L. Tayeb, Diffusion approximation for the one dimensional Boltzmann-Poisson system,, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1129.  doi: 10.3934/dcdsb.2004.4.1129.  Google Scholar

[10]

C. Heitzinger and C. Ringhofer, A transport equation for confined structures derived from the Boltzmann equation,, Comm. Math. Sci., 9 (2011), 829.   Google Scholar

[11]

A. Henrot, "Extremum Problems for Eigenvalues of Elliptic Operators,'', Frontiers in Mathematics, (2006).   Google Scholar

[12]

A. Jüngel, "Transport Equations for Semiconductors,'', Lecture Notes in Physics, 773 (2009).   Google Scholar

[13]

J.-L. Lions, "Équations Différentielles Opérationnelles et Problèmes aux Limites,'', Die Grundlehren der mathematischen Wissenschaften, (1961).   Google Scholar

[14]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations,'', Springer-Verlag, (1990).  doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[15]

N. Masmoudi and M. L. Tayeb, Diffusion limit of a semiconductor Boltzmann-Poisson system,, SIAM J. Math. Anal., 38 (2007), 1788.  doi: 10.1137/050630763.  Google Scholar

[16]

M. S. Mock, "Analysis of Mathematical Models of Semiconductor Devices,'', Advances in Numerical Computation Series, 3 (1983).   Google Scholar

[17]

P. Pietra and N. Vauchelet, Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET,, J. Comp. Elec., 7 (2008), 52.  doi: 10.1007/s10825-008-0253-z.  Google Scholar

[18]

F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis of boundary layers,, Asymptotic Anal., 4 (1991), 293.   Google Scholar

[19]

N. Vauchelet, Diffusive limit of a two dimensional kinetic system of partially quantized particles,, J. Stat. Phys., 139 (2010), 882.  doi: 10.1007/s10955-010-9970-3.  Google Scholar

[20]

N. Vauchelet, Diffusive transport of partially quantized particles: $L\log L$ solutions,, Math. Models Methods Appl. Sci., 18 (2008), 489.  doi: 10.1142/S0218202508002759.  Google Scholar

[21]

T. Wenckebach, "Essential of Semiconductor Physics,'', Wiley, (1999).   Google Scholar

show all references

References:
[1]

N. W. Ashcroft and N. D. Mermin, "Solid State Physics,'', Saunders College Publishing, (1976).   Google Scholar

[2]

J.-P. Aubin, Un théor\`eme de compacité,, C. R. Acad. Sci. Paris, 256 (1963), 5042.   Google Scholar

[3]

N. Ben Abdallah and L. Barletti, Quantum transport in crystals : Effective-mass theorem and k.p Hamiltonians,, Comm. Math. Phys., 307 (2011), 567.   Google Scholar

[4]

N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306.  doi: 10.1063/1.531567.  Google Scholar

[5]

N. Ben Abdallah, C. Jourdana and P. Pietra, An effective mass model for the simulation of ultra-scaled confined devices,, preprint, ().   Google Scholar

[6]

N. Ben Abdallah and F. Méhats, On a Vlasov-Schrödinger-Poisson model,, Comm. Partial Differential Equations, 29 (2004), 173.   Google Scholar

[7]

N. Ben Abdallah and F. Méhats, Semiclassical analysis of the Schrödinger equation with a partially confining potential,, J. Math. Pures Appl. (9), 84 (2005), 580.  doi: 10.1016/j.matpur.2004.10.004.  Google Scholar

[8]

N. Ben Abdallah, F. Méhats and N. Vauchelet, Diffusive transport of partially quantized particles: Existence, uniqueness and long-time behaviour,, Proc. Edinb. Math. Soc. (2), 49 (2006), 513.  doi: 10.1017/S0013091504000987.  Google Scholar

[9]

N. Ben Abdallah and M. L. Tayeb, Diffusion approximation for the one dimensional Boltzmann-Poisson system,, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1129.  doi: 10.3934/dcdsb.2004.4.1129.  Google Scholar

[10]

C. Heitzinger and C. Ringhofer, A transport equation for confined structures derived from the Boltzmann equation,, Comm. Math. Sci., 9 (2011), 829.   Google Scholar

[11]

A. Henrot, "Extremum Problems for Eigenvalues of Elliptic Operators,'', Frontiers in Mathematics, (2006).   Google Scholar

[12]

A. Jüngel, "Transport Equations for Semiconductors,'', Lecture Notes in Physics, 773 (2009).   Google Scholar

[13]

J.-L. Lions, "Équations Différentielles Opérationnelles et Problèmes aux Limites,'', Die Grundlehren der mathematischen Wissenschaften, (1961).   Google Scholar

[14]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations,'', Springer-Verlag, (1990).  doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[15]

N. Masmoudi and M. L. Tayeb, Diffusion limit of a semiconductor Boltzmann-Poisson system,, SIAM J. Math. Anal., 38 (2007), 1788.  doi: 10.1137/050630763.  Google Scholar

[16]

M. S. Mock, "Analysis of Mathematical Models of Semiconductor Devices,'', Advances in Numerical Computation Series, 3 (1983).   Google Scholar

[17]

P. Pietra and N. Vauchelet, Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET,, J. Comp. Elec., 7 (2008), 52.  doi: 10.1007/s10825-008-0253-z.  Google Scholar

[18]

F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis of boundary layers,, Asymptotic Anal., 4 (1991), 293.   Google Scholar

[19]

N. Vauchelet, Diffusive limit of a two dimensional kinetic system of partially quantized particles,, J. Stat. Phys., 139 (2010), 882.  doi: 10.1007/s10955-010-9970-3.  Google Scholar

[20]

N. Vauchelet, Diffusive transport of partially quantized particles: $L\log L$ solutions,, Math. Models Methods Appl. Sci., 18 (2008), 489.  doi: 10.1142/S0218202508002759.  Google Scholar

[21]

T. Wenckebach, "Essential of Semiconductor Physics,'', Wiley, (1999).   Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[5]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[10]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[15]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[16]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[17]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[20]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]