December  2011, 4(4): 1143-1158. doi: 10.3934/krm.2011.4.1143

A problem of moment realizability in quantum statistical physics

1. 

IRMAR, Université de Rennes 1 and IPSO, INRIA Rennes, 35042 Rennes Cedex, France

2. 

Université de Lyon, Université de Lyon 1, CNRS, UMR 5208, Institut Camille Jordan, F - 69622 Villeurbanne, France

Received  June 2011 Published  November 2011

This work is a generalization of the results previously obtained in [17] in a one-dimensional setting: we revisit the problem of the minimization of the quantum free energy (entropy + energy) under local constraints (moments) and prove the existence of minimizers in various configurations. While [17] addressed the 1D case on bounded domains, we treat in the present paper the multi-dimensional case as well as unbounded domains and non-linear interactions as Hartree/Hartree-Fock. Moreover, whereas [17] dealt with the first moment only, namely the charge density, we extend the results to the second moment, the current density.
Citation: Florian Méhats, Olivier Pinaud. A problem of moment realizability in quantum statistical physics. Kinetic & Related Models, 2011, 4 (4) : 1143-1158. doi: 10.3934/krm.2011.4.1143
References:
[1]

A. Arnold, Self-consistent relaxation-time models in quantum mechanics, Comm. Partial Differential Equations, 21 (1996), 473-506.  Google Scholar

[2]

L. G. Brown and H. Kosaki, Jensen's inequality in semi-finite von Neumann algebras, J. Operator Theory, 23 (1990), 3-19.  Google Scholar

[3]

P. Degond, S. Gallego and F. Méhats, An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes, J. Comput. Phys., 221 (2007), 226-249. doi: 10.1016/j.jcp.2006.06.027.  Google Scholar

[4]

_____, Isothermal quantum hydrodynamics: Derivation, asymptotic analysis, and simulation, Multiscale Model. Simul., 6 (2007), 246-272. doi: 10.1137/06067153X.  Google Scholar

[5]

_____, On quantum hydrodynamic and quantum energy transport models, Commun. Math. Sci., 5 (2007), 887-908. Google Scholar

[6]

P. Degond, S. Gallego, F. Méhats and C. Ringhofer, Quantum hydrodynamic and diffusion models derived from the entropy principle, in "Quantum Transport," Lecture Notes in Math., 1946, Springer, Berlin, (2008), 111-168.  Google Scholar

[7]

P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118 (2005), 625-667. doi: 10.1007/s10955-004-8823-3.  Google Scholar

[8]

_____, Quantum hydrodynamic models derived from the entropy principle, in "Nonlinear Partial Differential Equations and Related Analysis," Contemp. Math., Amer. Math. Soc., 371, Providence, RI, (2005), 107-131. Google Scholar

[9]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Statist. Phys., 112 (2003), 587-628. doi: 10.1023/A:1023824008525.  Google Scholar

[10]

J. Dolbeault, P. Felmer, M. Loss and E. Paturel, Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems, J. Funct. Anal., 238 (2006), 193-220. doi: 10.1016/j.jfa.2005.11.008.  Google Scholar

[11]

J. Dolbeault, P. Felmer and M. Lewin, Orbitally stable states in generalized Hartree-Fock theory, Math. Models Methods Appl. Sci., 19 (2009), 347-367. doi: 10.1142/S0218202509003450.  Google Scholar

[12]

A. Jüngel and D. Matthes, A derivation of the isothermal quantum hydrodynamic equations using entropy minimization, ZAMM Z. Angew. Math. Mech., 85 (2005), 806-814. doi: 10.1002/zamm.200510232.  Google Scholar

[13]

A. Jüngel, D. Matthes and J. P. Milišić, Derivation of new quantum hydrodynamic equations using entropy minimization, SIAM J. Appl. Math., 67 (2006), 46-68. doi: 10.1137/050644823.  Google Scholar

[14]

M. Junk, Domain of definition of Levermore's five-moment system, J. Statist. Phys., 93 (1998), 1143-1167. doi: 10.1023/B:JOSS.0000033155.07331.d9.  Google Scholar

[15]

C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065. doi: 10.1007/BF02179552.  Google Scholar

[16]

P.-L. Lions, Hartree-Fock and related equations, in "Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. IX" (Paris, 1985-1986), Pitman Res. Notes Math. Ser., 181, Longman Sci. Tech., Harlow, (1988), 304-333.  Google Scholar

[17]

F. Méhats and O. Pinaud, An inverse problem in quantum statistical physics, J. Stat. Phys., 140 (2010), 565-602. doi: 10.1007/s10955-010-0003-z.  Google Scholar

[18]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. I. Functional Analysis," Second edition, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.  Google Scholar

[19]

B. Simon, "Trace Ideals and their Applications," Second edition, Mathematical Surveys and Monographs, 120, American Mathematical Society, Providence, RI, 2005.  Google Scholar

show all references

References:
[1]

A. Arnold, Self-consistent relaxation-time models in quantum mechanics, Comm. Partial Differential Equations, 21 (1996), 473-506.  Google Scholar

[2]

L. G. Brown and H. Kosaki, Jensen's inequality in semi-finite von Neumann algebras, J. Operator Theory, 23 (1990), 3-19.  Google Scholar

[3]

P. Degond, S. Gallego and F. Méhats, An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes, J. Comput. Phys., 221 (2007), 226-249. doi: 10.1016/j.jcp.2006.06.027.  Google Scholar

[4]

_____, Isothermal quantum hydrodynamics: Derivation, asymptotic analysis, and simulation, Multiscale Model. Simul., 6 (2007), 246-272. doi: 10.1137/06067153X.  Google Scholar

[5]

_____, On quantum hydrodynamic and quantum energy transport models, Commun. Math. Sci., 5 (2007), 887-908. Google Scholar

[6]

P. Degond, S. Gallego, F. Méhats and C. Ringhofer, Quantum hydrodynamic and diffusion models derived from the entropy principle, in "Quantum Transport," Lecture Notes in Math., 1946, Springer, Berlin, (2008), 111-168.  Google Scholar

[7]

P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118 (2005), 625-667. doi: 10.1007/s10955-004-8823-3.  Google Scholar

[8]

_____, Quantum hydrodynamic models derived from the entropy principle, in "Nonlinear Partial Differential Equations and Related Analysis," Contemp. Math., Amer. Math. Soc., 371, Providence, RI, (2005), 107-131. Google Scholar

[9]

P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Statist. Phys., 112 (2003), 587-628. doi: 10.1023/A:1023824008525.  Google Scholar

[10]

J. Dolbeault, P. Felmer, M. Loss and E. Paturel, Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems, J. Funct. Anal., 238 (2006), 193-220. doi: 10.1016/j.jfa.2005.11.008.  Google Scholar

[11]

J. Dolbeault, P. Felmer and M. Lewin, Orbitally stable states in generalized Hartree-Fock theory, Math. Models Methods Appl. Sci., 19 (2009), 347-367. doi: 10.1142/S0218202509003450.  Google Scholar

[12]

A. Jüngel and D. Matthes, A derivation of the isothermal quantum hydrodynamic equations using entropy minimization, ZAMM Z. Angew. Math. Mech., 85 (2005), 806-814. doi: 10.1002/zamm.200510232.  Google Scholar

[13]

A. Jüngel, D. Matthes and J. P. Milišić, Derivation of new quantum hydrodynamic equations using entropy minimization, SIAM J. Appl. Math., 67 (2006), 46-68. doi: 10.1137/050644823.  Google Scholar

[14]

M. Junk, Domain of definition of Levermore's five-moment system, J. Statist. Phys., 93 (1998), 1143-1167. doi: 10.1023/B:JOSS.0000033155.07331.d9.  Google Scholar

[15]

C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065. doi: 10.1007/BF02179552.  Google Scholar

[16]

P.-L. Lions, Hartree-Fock and related equations, in "Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. IX" (Paris, 1985-1986), Pitman Res. Notes Math. Ser., 181, Longman Sci. Tech., Harlow, (1988), 304-333.  Google Scholar

[17]

F. Méhats and O. Pinaud, An inverse problem in quantum statistical physics, J. Stat. Phys., 140 (2010), 565-602. doi: 10.1007/s10955-010-0003-z.  Google Scholar

[18]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. I. Functional Analysis," Second edition, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.  Google Scholar

[19]

B. Simon, "Trace Ideals and their Applications," Second edition, Mathematical Surveys and Monographs, 120, American Mathematical Society, Providence, RI, 2005.  Google Scholar

[1]

Paolo Antonelli, Pierangelo Marcati. Quantum hydrodynamics with nonlinear interactions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 1-13. doi: 10.3934/dcdss.2016.9.1

[2]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

[3]

Nicola Zamponi. Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization. Kinetic & Related Models, 2012, 5 (1) : 203-221. doi: 10.3934/krm.2012.5.203

[4]

José Luis López, Jesús Montejo-Gámez. On viscous quantum hydrodynamics associated with nonlinear Schrödinger-Doebner-Goldin models. Kinetic & Related Models, 2012, 5 (3) : 517-536. doi: 10.3934/krm.2012.5.517

[5]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[6]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021

[7]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[8]

Bernard Bonnard, Jean-Baptiste Caillau, Olivier Cots. Energy minimization in two-level dissipative quantum control: Th e integrable case. Conference Publications, 2011, 2011 (Special) : 198-208. doi: 10.3934/proc.2011.2011.198

[9]

Nicolas Augier, Ugo Boscain, Mario Sigalotti. Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems. Mathematical Control & Related Fields, 2020, 10 (4) : 877-911. doi: 10.3934/mcrf.2020023

[10]

Gabriel Rivière. Remarks on quantum ergodicity. Journal of Modern Dynamics, 2013, 7 (1) : 119-133. doi: 10.3934/jmd.2013.7.119

[11]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[12]

Dmitry Jakobson. On quantum limits on flat tori. Electronic Research Announcements, 1995, 1: 80-86.

[13]

James B. Kennedy, Jonathan Rohleder. On the hot spots of quantum graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021095

[14]

Jin-Cheng Jiang, Chi-Kun Lin, Shuanglin Shao. On one dimensional quantum Zakharov system. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5445-5475. doi: 10.3934/dcds.2016040

[15]

Dubi Kelmer. Quantum ergodicity for products of hyperbolic planes. Journal of Modern Dynamics, 2008, 2 (2) : 287-313. doi: 10.3934/jmd.2008.2.287

[16]

Ruikuan Liu, Tian Ma, Shouhong Wang, Jiayan Yang. Thermodynamical potentials of classical and quantum systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1411-1448. doi: 10.3934/dcdsb.2018214

[17]

Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310

[18]

Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems & Imaging, 2007, 1 (3) : 557-575. doi: 10.3934/ipi.2007.1.557

[19]

Huai-Dong Cao and Jian Zhou. On quantum de Rham cohomology theory. Electronic Research Announcements, 1999, 5: 24-34.

[20]

Philipp Fuchs, Ansgar Jüngel, Max von Renesse. On the Lagrangian structure of quantum fluid models. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1375-1396. doi: 10.3934/dcds.2014.34.1375

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]