March  2011, 4(1): 153-167. doi: 10.3934/krm.2011.4.153

On a kinetic BGK model for slow chemical reactions

1. 

Dipartimento di Matematica, Università di Parma, V.le G.P. Usberti 53/A, 43124 Parma, Italy, Italy

Received  July 2010 Revised  October 2010 Published  January 2011

A recently proposed consistent BGK-type approach for chemically reacting gas mixtures is discussed, which accounts for the correct rates of transfer for mass, momentum and energy, and recovers the exact conservation equations and collision equilibria, including mass action law. In particular, the hydrodynamic limit is derived by a Chapman-Enskog procedure, and compared to existing results for the reactive and non-reactive cases.
Citation: Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic & Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153
References:
[1]

M. Abramowitz and I. A. Stegun (Eds.), "Handbook of Mathematical Functions,'', Dover, (1965).   Google Scholar

[2]

P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures,, J. Stat. Phys., 106 (2002), 993.  doi: 10.1023/A:1014033703134.  Google Scholar

[3]

K. Aoki, Y. Sone and T. Yamada, Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory,, Phys. Fluids A, 2 (1990), 1867.  doi: 10.1063/1.857661.  Google Scholar

[4]

P. L. Bhatnagar, E. P. Gross and K. Krook, A model for collision processes in gases,, Phys. Rev., 94 (1954), 511.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[5]

M. Bisi, M. Groppi and G. Spiga, Grad's distribution functions in the kinetic equations for a chemical reaction,, Continuum Mech. Thermodyn., 14 (2002), 207.  doi: 10.1007/s001610100066.  Google Scholar

[6]

M. Bisi, M. Groppi and G. Spiga, Fluid-dynamic equations for reacting gas mixtures,, Applications of Mathematics, 50 (2005), 43.  doi: 10.1007/s10492-005-0003-5.  Google Scholar

[7]

M. Bisi, M. Groppi and G. Spiga, Kinetic problems in rarefied gas mixtures,, in, (2008), 21.   Google Scholar

[8]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit,, Phys. Rev. E, 81 (2010).  doi: 10.1103/PhysRevE.81.036327.  Google Scholar

[9]

A. V. Bobylev, The theory of the spatially uniform Boltzmann equation for Maxwell molecules,, Sov. Sci. Review C, 7 (1988), 112.   Google Scholar

[10]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer Verlag, (1988).   Google Scholar

[11]

C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'', Cambridge University Press, (2000).   Google Scholar

[12]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,'', University Press, (1970).   Google Scholar

[13]

J. F. Clarke and M. McChesney, "The Dynamics of Real Gases,'', Butterworths, (1964).   Google Scholar

[14]

F. Conforto, R. Monaco, F. Schürrer and I. Ziegler, Steady detonation waves via the Boltzmann equation for a reacting mixture,, J. Phys. A, 36 (2003), 5381.  doi: 10.1088/0305-4470/36/20/303.  Google Scholar

[15]

S. R. De Groot and P. Mazur, "Non-equilibrium Thermodynamics,'', North Holland, (1962).   Google Scholar

[16]

L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions,, Europ. J. Mech./B Fluids, 24 (2005), 219.  doi: 10.1016/j.euromechflu.2004.07.004.  Google Scholar

[17]

G. Dixon-Lewis, Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems,, Proc. R. Soc. Lond. A, 307 (1968), 111.  doi: 10.1098/rspa.1968.0178.  Google Scholar

[18]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,'', North Holland, (1972).   Google Scholar

[19]

V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas,, Phys. of Fluids A: Fluid Dynamics, 1 (1989), 380.  doi: 10.1063/1.857458.  Google Scholar

[20]

V. Giovangigli, "Multicomponent Flow Modeling,'', Birkhäuser Verlag, (1999).   Google Scholar

[21]

M. Groppi and G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas,, J. Math. Chem., 26 (1999), 197.  doi: 10.1023/A:1019194113816.  Google Scholar

[22]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures,, Physics of Fluids, 16 (2004), 4273.  doi: 10.1063/1.1808651.  Google Scholar

[23]

R. J. Kee, M. E. Coltrin and P. Glarborg, "Chemically Reacting Flow: Theory and Practice,'', Wiley, (2003).  doi: 10.1002/0471461296.  Google Scholar

[24]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow,, Phys. of Fluids, 18 (2006).  doi: 10.1063/1.2185691.  Google Scholar

[25]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer,, Chemical Engineering Science, 52 (1997), 861.  doi: 10.1016/S0009-2509(96)00458-7.  Google Scholar

[26]

K. K. Kuo, "Principles of Combustion,'', Wiley, (2005).   Google Scholar

[27]

R. Monaco, M. Pandolfi Bianchi and A. J. Soares, BGK-type models in strong reaction and kinetic chemical equilibrium regimes,, J. Phys. A: Math. Gen., 38 (2005), 10413.  doi: 10.1088/0305-4470/38/48/012.  Google Scholar

[28]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases,, Physica A, 272 (1999), 563.  doi: 10.1016/S0378-4371(99)00336-2.  Google Scholar

[29]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'', Birkhäuser Verlag, (2002).   Google Scholar

[30]

P. Welander, On the temperature jump in a rarefied gas,, Ark. Fys., 7 (1954), 507.   Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun (Eds.), "Handbook of Mathematical Functions,'', Dover, (1965).   Google Scholar

[2]

P. Andries, K. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures,, J. Stat. Phys., 106 (2002), 993.  doi: 10.1023/A:1014033703134.  Google Scholar

[3]

K. Aoki, Y. Sone and T. Yamada, Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory,, Phys. Fluids A, 2 (1990), 1867.  doi: 10.1063/1.857661.  Google Scholar

[4]

P. L. Bhatnagar, E. P. Gross and K. Krook, A model for collision processes in gases,, Phys. Rev., 94 (1954), 511.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[5]

M. Bisi, M. Groppi and G. Spiga, Grad's distribution functions in the kinetic equations for a chemical reaction,, Continuum Mech. Thermodyn., 14 (2002), 207.  doi: 10.1007/s001610100066.  Google Scholar

[6]

M. Bisi, M. Groppi and G. Spiga, Fluid-dynamic equations for reacting gas mixtures,, Applications of Mathematics, 50 (2005), 43.  doi: 10.1007/s10492-005-0003-5.  Google Scholar

[7]

M. Bisi, M. Groppi and G. Spiga, Kinetic problems in rarefied gas mixtures,, in, (2008), 21.   Google Scholar

[8]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit,, Phys. Rev. E, 81 (2010).  doi: 10.1103/PhysRevE.81.036327.  Google Scholar

[9]

A. V. Bobylev, The theory of the spatially uniform Boltzmann equation for Maxwell molecules,, Sov. Sci. Review C, 7 (1988), 112.   Google Scholar

[10]

C. Cercignani, "The Boltzmann Equation and its Applications,'', Springer Verlag, (1988).   Google Scholar

[11]

C. Cercignani, "Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations,'', Cambridge University Press, (2000).   Google Scholar

[12]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases,'', University Press, (1970).   Google Scholar

[13]

J. F. Clarke and M. McChesney, "The Dynamics of Real Gases,'', Butterworths, (1964).   Google Scholar

[14]

F. Conforto, R. Monaco, F. Schürrer and I. Ziegler, Steady detonation waves via the Boltzmann equation for a reacting mixture,, J. Phys. A, 36 (2003), 5381.  doi: 10.1088/0305-4470/36/20/303.  Google Scholar

[15]

S. R. De Groot and P. Mazur, "Non-equilibrium Thermodynamics,'', North Holland, (1962).   Google Scholar

[16]

L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions,, Europ. J. Mech./B Fluids, 24 (2005), 219.  doi: 10.1016/j.euromechflu.2004.07.004.  Google Scholar

[17]

G. Dixon-Lewis, Flame structure and flame reaction kinetics. II. Transport phenomena in multicomponent systems,, Proc. R. Soc. Lond. A, 307 (1968), 111.  doi: 10.1098/rspa.1968.0178.  Google Scholar

[18]

J. H. Ferziger and H. G. Kaper, "Mathematical Theory of Transport Processes in Gases,'', North Holland, (1972).   Google Scholar

[19]

V. Garzó, A. Santos and J. J. Brey, A kinetic model for a multicomponent gas,, Phys. of Fluids A: Fluid Dynamics, 1 (1989), 380.  doi: 10.1063/1.857458.  Google Scholar

[20]

V. Giovangigli, "Multicomponent Flow Modeling,'', Birkhäuser Verlag, (1999).   Google Scholar

[21]

M. Groppi and G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas,, J. Math. Chem., 26 (1999), 197.  doi: 10.1023/A:1019194113816.  Google Scholar

[22]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures,, Physics of Fluids, 16 (2004), 4273.  doi: 10.1063/1.1808651.  Google Scholar

[23]

R. J. Kee, M. E. Coltrin and P. Glarborg, "Chemically Reacting Flow: Theory and Practice,'', Wiley, (2003).  doi: 10.1002/0471461296.  Google Scholar

[24]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow,, Phys. of Fluids, 18 (2006).  doi: 10.1063/1.2185691.  Google Scholar

[25]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer,, Chemical Engineering Science, 52 (1997), 861.  doi: 10.1016/S0009-2509(96)00458-7.  Google Scholar

[26]

K. K. Kuo, "Principles of Combustion,'', Wiley, (2005).   Google Scholar

[27]

R. Monaco, M. Pandolfi Bianchi and A. J. Soares, BGK-type models in strong reaction and kinetic chemical equilibrium regimes,, J. Phys. A: Math. Gen., 38 (2005), 10413.  doi: 10.1088/0305-4470/38/48/012.  Google Scholar

[28]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases,, Physica A, 272 (1999), 563.  doi: 10.1016/S0378-4371(99)00336-2.  Google Scholar

[29]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'', Birkhäuser Verlag, (2002).   Google Scholar

[30]

P. Welander, On the temperature jump in a rarefied gas,, Ark. Fys., 7 (1954), 507.   Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[5]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[14]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[15]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[16]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[19]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[20]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]