-
Previous Article
On a continuous mixed strategies model for evolutionary game theory
- KRM Home
- This Issue
-
Next Article
On a kinetic BGK model for slow chemical reactions
Kinetic modeling of economic games with large number of participants
1. | Department of Mathematics, Karlstad University, SE-651 88 Karlstad |
References:
[1] |
F. Bassetti and G. Toscani, Explicit equilibria in a kinetic model of gambling, Phys. Rev. E, 81 (2010). |
[2] |
A. V. Bobylev, J. A. Carillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys., 98 (2000), 743-773.
doi: 10.1023/A:1018627625800. |
[3] |
A. V. Bobylev and C. Cercignani, Self-similar solutions for the Boltzmann equation with inelastic and elastic interactions, J. Stat. Phys., 110 (2003), 333-375.
doi: 10.1023/A:1021031031038. |
[4] |
A. V. Bobylev, C. Cercignani and I. M. Gamba, On the self-similar asymptotics for generalized nonlinear kinetic Maxwell models, Commun. Math. Phys., 291 (2009), 599-644.
doi: 10.1007/s00220-009-0876-3. |
[5] |
A. V. Bobylev, C. Cercignani and G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, J. Stat. Phys., 111 (2003), 403-417.
doi: 10.1023/A:1022273528296. |
[6] |
L. Boltzmann, "Populäre Schriften,'' J.A. Barth, Leipzig, 1905. |
[7] |
S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys., 120 (2005), 253-277.
doi: 10.1007/s10955-005-5456-0. |
[8] |
D. Matthes and G. Toscani, Analysis of a model for wealth redistribution, Kinet. Relat. Models, 1 (2008), 1-27. |
[9] |
G. Naldi, L. Pareschi and G. Toscani (Eds.), "Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences,'' Birkhauser, (to appear in 2010). |
[10] |
I. Shafarevish, "Socialism as Phenomenon of World History'' (in Russian), YMCA-Press, Paris, 1977. |
[11] |
F. Slanina, Inelastically scattering particles and wealth distribution in an open economy, Phys. Rev. E, 69 (2004). |
[12] |
I. Wright, The social architecture of capitalism, Physica A, 346 (2005), 589-620.
doi: 10.1016/j.physa.2004.08.006. |
show all references
References:
[1] |
F. Bassetti and G. Toscani, Explicit equilibria in a kinetic model of gambling, Phys. Rev. E, 81 (2010). |
[2] |
A. V. Bobylev, J. A. Carillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys., 98 (2000), 743-773.
doi: 10.1023/A:1018627625800. |
[3] |
A. V. Bobylev and C. Cercignani, Self-similar solutions for the Boltzmann equation with inelastic and elastic interactions, J. Stat. Phys., 110 (2003), 333-375.
doi: 10.1023/A:1021031031038. |
[4] |
A. V. Bobylev, C. Cercignani and I. M. Gamba, On the self-similar asymptotics for generalized nonlinear kinetic Maxwell models, Commun. Math. Phys., 291 (2009), 599-644.
doi: 10.1007/s00220-009-0876-3. |
[5] |
A. V. Bobylev, C. Cercignani and G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, J. Stat. Phys., 111 (2003), 403-417.
doi: 10.1023/A:1022273528296. |
[6] |
L. Boltzmann, "Populäre Schriften,'' J.A. Barth, Leipzig, 1905. |
[7] |
S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys., 120 (2005), 253-277.
doi: 10.1007/s10955-005-5456-0. |
[8] |
D. Matthes and G. Toscani, Analysis of a model for wealth redistribution, Kinet. Relat. Models, 1 (2008), 1-27. |
[9] |
G. Naldi, L. Pareschi and G. Toscani (Eds.), "Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences,'' Birkhauser, (to appear in 2010). |
[10] |
I. Shafarevish, "Socialism as Phenomenon of World History'' (in Russian), YMCA-Press, Paris, 1977. |
[11] |
F. Slanina, Inelastically scattering particles and wealth distribution in an open economy, Phys. Rev. E, 69 (2004). |
[12] |
I. Wright, The social architecture of capitalism, Physica A, 346 (2005), 589-620.
doi: 10.1016/j.physa.2004.08.006. |
[1] |
Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002 |
[2] |
Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801 |
[3] |
Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036 |
[4] |
Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101 |
[5] |
Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857 |
[6] |
F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91 |
[7] |
Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897 |
[8] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[9] |
Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703 |
[10] |
Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations and Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003 |
[11] |
Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471 |
[12] |
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure and Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51 |
[13] |
Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785 |
[14] |
Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817 |
[15] |
Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47 |
[16] |
Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837 |
[17] |
Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4823-4846. doi: 10.3934/dcds.2021059 |
[18] |
Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323 |
[19] |
Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198 |
[20] |
Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks and Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]