Advanced Search
Article Contents
Article Contents

Kinetic modeling of economic games with large number of participants

Abstract Related Papers Cited by
  • We study a Maxwell kinetic model of socio-economic behavior introduced in the paper A. V. Bobylev, C. Cercignani and I. M. Gamba, Commun. Math. Phys., 291 (2009), 599-644. The model depends on three non-negative parameters $\{\gamma, q ,s\}$ where $0<\gamma\leq 1$ is the control parameter. Two other parameters are fixed by market conditions. Self-similar solution of the corresponding kinetic equation for distribution of wealth is studied in detail for various sets of parameters. In particular, we investigate the efficiency of control. Some exact solutions and numerical examples are presented. Existence and uniqueness of solutions are also discussed.
    Mathematics Subject Classification: 82C40.


    \begin{equation} \\ \end{equation}
  • [1]

    F. Bassetti and G. Toscani, Explicit equilibria in a kinetic model of gambling, Phys. Rev. E, 81 (2010).


    A. V. Bobylev, J. A. Carillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys., 98 (2000), 743-773.doi: 10.1023/A:1018627625800.


    A. V. Bobylev and C. Cercignani, Self-similar solutions for the Boltzmann equation with inelastic and elastic interactions, J. Stat. Phys., 110 (2003), 333-375.doi: 10.1023/A:1021031031038.


    A. V. Bobylev, C. Cercignani and I. M. Gamba, On the self-similar asymptotics for generalized nonlinear kinetic Maxwell models, Commun. Math. Phys., 291 (2009), 599-644.doi: 10.1007/s00220-009-0876-3.


    A. V. Bobylev, C. Cercignani and G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, J. Stat. Phys., 111 (2003), 403-417.doi: 10.1023/A:1022273528296.


    L. Boltzmann, "Populäre Schriften,'' J.A. Barth, Leipzig, 1905.


    S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys., 120 (2005), 253-277.doi: 10.1007/s10955-005-5456-0.


    D. Matthes and G. Toscani, Analysis of a model for wealth redistribution, Kinet. Relat. Models, 1 (2008), 1-27.


    G. Naldi, L. Pareschi and G. Toscani (Eds.), "Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences,'' Birkhauser, (to appear in 2010).


    I. Shafarevish, "Socialism as Phenomenon of World History'' (in Russian), YMCA-Press, Paris, 1977.


    F. Slanina, Inelastically scattering particles and wealth distribution in an open economy, Phys. Rev. E, 69 (2004).


    I. Wright, The social architecture of capitalism, Physica A, 346 (2005), 589-620.doi: 10.1016/j.physa.2004.08.006.

  • 加载中

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint