March  2011, 4(1): 169-185. doi: 10.3934/krm.2011.4.169

Kinetic modeling of economic games with large number of participants

1. 

Department of Mathematics, Karlstad University, SE-651 88 Karlstad

Received  October 2010 Revised  December 2010 Published  January 2011

We study a Maxwell kinetic model of socio-economic behavior introduced in the paper A. V. Bobylev, C. Cercignani and I. M. Gamba, Commun. Math. Phys., 291 (2009), 599-644. The model depends on three non-negative parameters $\{\gamma, q ,s\}$ where $0<\gamma\leq 1$ is the control parameter. Two other parameters are fixed by market conditions. Self-similar solution of the corresponding kinetic equation for distribution of wealth is studied in detail for various sets of parameters. In particular, we investigate the efficiency of control. Some exact solutions and numerical examples are presented. Existence and uniqueness of solutions are also discussed.
Citation: Alexander Bobylev, Åsa Windfäll. Kinetic modeling of economic games with large number of participants. Kinetic & Related Models, 2011, 4 (1) : 169-185. doi: 10.3934/krm.2011.4.169
References:
[1]

F. Bassetti and G. Toscani, Explicit equilibria in a kinetic model of gambling,, Phys. Rev. E, 81 (2010).   Google Scholar

[2]

A. V. Bobylev, J. A. Carillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions,, J. Stat. Phys., 98 (2000), 743.  doi: 10.1023/A:1018627625800.  Google Scholar

[3]

A. V. Bobylev and C. Cercignani, Self-similar solutions for the Boltzmann equation with inelastic and elastic interactions,, J. Stat. Phys., 110 (2003), 333.  doi: 10.1023/A:1021031031038.  Google Scholar

[4]

A. V. Bobylev, C. Cercignani and I. M. Gamba, On the self-similar asymptotics for generalized nonlinear kinetic Maxwell models,, Commun. Math. Phys., 291 (2009), 599.  doi: 10.1007/s00220-009-0876-3.  Google Scholar

[5]

A. V. Bobylev, C. Cercignani and G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials,, J. Stat. Phys., 111 (2003), 403.  doi: 10.1023/A:1022273528296.  Google Scholar

[6]

L. Boltzmann, "Populäre Schriften,'', J.A. Barth, (1905).   Google Scholar

[7]

S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy,, J. Stat. Phys., 120 (2005), 253.  doi: 10.1007/s10955-005-5456-0.  Google Scholar

[8]

D. Matthes and G. Toscani, Analysis of a model for wealth redistribution,, Kinet. Relat. Models, 1 (2008), 1.   Google Scholar

[9]

G. Naldi, L. Pareschi and G. Toscani (Eds.), "Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences,'', Birkhauser, (2010).   Google Scholar

[10]

I. Shafarevish, "Socialism as Phenomenon of World History'' (in Russian),, YMCA-Press, (1977).   Google Scholar

[11]

F. Slanina, Inelastically scattering particles and wealth distribution in an open economy,, Phys. Rev. E, 69 (2004).   Google Scholar

[12]

I. Wright, The social architecture of capitalism,, Physica A, 346 (2005), 589.  doi: 10.1016/j.physa.2004.08.006.  Google Scholar

show all references

References:
[1]

F. Bassetti and G. Toscani, Explicit equilibria in a kinetic model of gambling,, Phys. Rev. E, 81 (2010).   Google Scholar

[2]

A. V. Bobylev, J. A. Carillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions,, J. Stat. Phys., 98 (2000), 743.  doi: 10.1023/A:1018627625800.  Google Scholar

[3]

A. V. Bobylev and C. Cercignani, Self-similar solutions for the Boltzmann equation with inelastic and elastic interactions,, J. Stat. Phys., 110 (2003), 333.  doi: 10.1023/A:1021031031038.  Google Scholar

[4]

A. V. Bobylev, C. Cercignani and I. M. Gamba, On the self-similar asymptotics for generalized nonlinear kinetic Maxwell models,, Commun. Math. Phys., 291 (2009), 599.  doi: 10.1007/s00220-009-0876-3.  Google Scholar

[5]

A. V. Bobylev, C. Cercignani and G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials,, J. Stat. Phys., 111 (2003), 403.  doi: 10.1023/A:1022273528296.  Google Scholar

[6]

L. Boltzmann, "Populäre Schriften,'', J.A. Barth, (1905).   Google Scholar

[7]

S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy,, J. Stat. Phys., 120 (2005), 253.  doi: 10.1007/s10955-005-5456-0.  Google Scholar

[8]

D. Matthes and G. Toscani, Analysis of a model for wealth redistribution,, Kinet. Relat. Models, 1 (2008), 1.   Google Scholar

[9]

G. Naldi, L. Pareschi and G. Toscani (Eds.), "Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences,'', Birkhauser, (2010).   Google Scholar

[10]

I. Shafarevish, "Socialism as Phenomenon of World History'' (in Russian),, YMCA-Press, (1977).   Google Scholar

[11]

F. Slanina, Inelastically scattering particles and wealth distribution in an open economy,, Phys. Rev. E, 69 (2004).   Google Scholar

[12]

I. Wright, The social architecture of capitalism,, Physica A, 346 (2005), 589.  doi: 10.1016/j.physa.2004.08.006.  Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[3]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[4]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[5]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[6]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[7]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[8]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[9]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[10]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[11]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001

[12]

Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229

[13]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[14]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[15]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[17]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[18]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[19]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[20]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]