March  2011, 4(1): 17-40. doi: 10.3934/krm.2011.4.17

Bounded solutions of the Boltzmann equation in the whole space

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China

2. 

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501

3. 

17-26 Iwasaki, Hodogaya, Yokohama 240-0015

4. 

School of Mathematics, Wuhan University, 430072, Wuhan

5. 

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

Received  October 2010 Revised  October 2010 Published  January 2011

We construct bounded classical solutions of the Boltzmann equation in the whole space without specifying any limit behaviors at the spatial infinity and without assuming the smallness condition on initial data. More precisely, we show that if the initial data is non-negative and belongs to a uniformly local Sobolev space in the space variable and a standard Sobolev space with Maxwellian type decay property in the velocity variable, then the Cauchy problem of the Boltzmann equation possesses a unique non-negative local solution in the same function space, both for the cutoff and non-cutoff collision cross section with mild singularity. The known solutions such as solutions on the torus (space periodic solutions) and in the vacuum (solutions vanishing at the spatial infinity), and solutions in the whole space having a limit equilibrium state at the spatial infinity are included in our category.
Citation: Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic & Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17
References:
[1]

R. Alexandre, Some solutions of the Boltzmann equation without angular cutoff,, J. Stat. Physics, 104 (2001), 327. doi: 10.1023/A:1010317913642. Google Scholar

[2]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions,, Arch. Rational Mech. Anal., 152 (2000), 327. doi: 10.1007/s002050000083. Google Scholar

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation,, Arch. Rational Mech. Anal., 198 (2010), 39. doi: 10.1007/s00205-010-0290-1. Google Scholar

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff,, to appear in Comm. Math. Phys., (). Google Scholar

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang, Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff,, C. R. Math. Acad. Sci. Paris, (). doi: 10.1016/j.crma.2010.07.008. Google Scholar

[6]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Boltzmann equation without angular cutoff in the whole space: I. Global existence for soft potential,, Preprint HAL, (). Google Scholar

[7]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang, The Boltzmann equation without angular cutoff in the whole space: II. Global existence for hard potential,, to appear in Analysis and Applications, (). Google Scholar

[8]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang, Boltzmann equation without angular cutoff in the whole space: III, Qualitative properties of solutions,, Preprint HAL, (). Google Scholar

[9]

R. Alexandre and C. Villani, On the Boltzmann equation for long-range interaction,, Communications on Pure and Applied Mathematics, 55 (2002), 30. doi: 10.1002/cpa.10012. Google Scholar

[10]

C. Cercignani, "The Boltzmann Equation and its Applications,", Applied mathematical sciences, 67 (1988). Google Scholar

[11]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied mathematical sciences, 106 (1994). Google Scholar

[12]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability,, Ann. Math., 130 (1989), 321. doi: 10.2307/1971423. Google Scholar

[13]

H. Grad, Asymptotic Theory of the Boltzmann Equation II,, in: Laurmann J. A. (ed.) Rarefied Gas Dynamics, 1 (1963), 26. Google Scholar

[14]

P.-T. Gressman and R.-M. Strain, Global classical solutions of the Boltzmann equation with long-range interactions,, Proc. Nat. Acad. Sci., 107 (2010), 5744. doi: 10.1073/pnas.1001185107. Google Scholar

[15]

Y. Guo, The Boltzmann equation in the whole space,, Indiana Univ. Maths. J., 53 (2004), 1081. doi: 10.1512/iumj.2004.53.2574. Google Scholar

[16]

Y. Guo, Bounded solutions for the Boltzmann equation,, Quaterly of Applied Mathematics, LXVIII (2010), 143. Google Scholar

[17]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Rational Mech. Anal., 58 (1975), 181. doi: 10.1007/BF00280740. Google Scholar

[18]

P. L. Lions, Regularity and compactness for Boltzmann collision kernels without angular cut-off,, C. R. Acad. Sci. Paris Series I, 326 (1998), 37. Google Scholar

[19]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation,, Phys. D, 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011. Google Scholar

[20]

Y. P. Pao, Boltzmann collision operator with inverse power intermolecular potential,, I, 27 (1974). Google Scholar

[21]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation,, Proc. Japan Acad., 50 (1974), 179. doi: 10.3792/pja/1195519027. Google Scholar

[22]

S. Ukai, Les solutions globales de l'equation de Boltzmann dans l'espace tout entier et dans le demi-espace,, C. R. Acad. Sci. Paris Ser. A-B, 282 (1976). Google Scholar

[23]

S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff,, Japan J. Appl. Math., 1 (1984), 141. Google Scholar

[24]

S. Ukai, Solutions of the Boltzmann equation,, in, 18 (1986), 37. Google Scholar

[25]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002). Google Scholar

show all references

References:
[1]

R. Alexandre, Some solutions of the Boltzmann equation without angular cutoff,, J. Stat. Physics, 104 (2001), 327. doi: 10.1023/A:1010317913642. Google Scholar

[2]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions,, Arch. Rational Mech. Anal., 152 (2000), 327. doi: 10.1007/s002050000083. Google Scholar

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation,, Arch. Rational Mech. Anal., 198 (2010), 39. doi: 10.1007/s00205-010-0290-1. Google Scholar

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff,, to appear in Comm. Math. Phys., (). Google Scholar

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang, Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff,, C. R. Math. Acad. Sci. Paris, (). doi: 10.1016/j.crma.2010.07.008. Google Scholar

[6]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Boltzmann equation without angular cutoff in the whole space: I. Global existence for soft potential,, Preprint HAL, (). Google Scholar

[7]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang, The Boltzmann equation without angular cutoff in the whole space: II. Global existence for hard potential,, to appear in Analysis and Applications, (). Google Scholar

[8]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang, Boltzmann equation without angular cutoff in the whole space: III, Qualitative properties of solutions,, Preprint HAL, (). Google Scholar

[9]

R. Alexandre and C. Villani, On the Boltzmann equation for long-range interaction,, Communications on Pure and Applied Mathematics, 55 (2002), 30. doi: 10.1002/cpa.10012. Google Scholar

[10]

C. Cercignani, "The Boltzmann Equation and its Applications,", Applied mathematical sciences, 67 (1988). Google Scholar

[11]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,", Applied mathematical sciences, 106 (1994). Google Scholar

[12]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability,, Ann. Math., 130 (1989), 321. doi: 10.2307/1971423. Google Scholar

[13]

H. Grad, Asymptotic Theory of the Boltzmann Equation II,, in: Laurmann J. A. (ed.) Rarefied Gas Dynamics, 1 (1963), 26. Google Scholar

[14]

P.-T. Gressman and R.-M. Strain, Global classical solutions of the Boltzmann equation with long-range interactions,, Proc. Nat. Acad. Sci., 107 (2010), 5744. doi: 10.1073/pnas.1001185107. Google Scholar

[15]

Y. Guo, The Boltzmann equation in the whole space,, Indiana Univ. Maths. J., 53 (2004), 1081. doi: 10.1512/iumj.2004.53.2574. Google Scholar

[16]

Y. Guo, Bounded solutions for the Boltzmann equation,, Quaterly of Applied Mathematics, LXVIII (2010), 143. Google Scholar

[17]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Rational Mech. Anal., 58 (1975), 181. doi: 10.1007/BF00280740. Google Scholar

[18]

P. L. Lions, Regularity and compactness for Boltzmann collision kernels without angular cut-off,, C. R. Acad. Sci. Paris Series I, 326 (1998), 37. Google Scholar

[19]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation,, Phys. D, 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011. Google Scholar

[20]

Y. P. Pao, Boltzmann collision operator with inverse power intermolecular potential,, I, 27 (1974). Google Scholar

[21]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation,, Proc. Japan Acad., 50 (1974), 179. doi: 10.3792/pja/1195519027. Google Scholar

[22]

S. Ukai, Les solutions globales de l'equation de Boltzmann dans l'espace tout entier et dans le demi-espace,, C. R. Acad. Sci. Paris Ser. A-B, 282 (1976). Google Scholar

[23]

S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff,, Japan J. Appl. Math., 1 (1984), 141. Google Scholar

[24]

S. Ukai, Solutions of the Boltzmann equation,, in, 18 (1986), 37. Google Scholar

[25]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in, (2002). Google Scholar

[1]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011

[2]

Lanzhe Liu. Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators. Communications on Pure & Applied Analysis, 2015, 14 (2) : 627-636. doi: 10.3934/cpaa.2015.14.627

[3]

JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042

[4]

Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080

[5]

Seung-Yeal Ha, Ho Lee, Seok Bae Yun. Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 115-143. doi: 10.3934/dcds.2009.24.115

[6]

Nicolas Lerner, Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators. Kinetic & Related Models, 2013, 6 (3) : 625-648. doi: 10.3934/krm.2013.6.625

[7]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[8]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[9]

M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705

[10]

Alexander V. Bobylev, Irene M. Gamba. Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules. Kinetic & Related Models, 2017, 10 (3) : 573-585. doi: 10.3934/krm.2017023

[11]

Xinkuan Chai. The Boltzmann equation near Maxwellian in the whole space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 435-458. doi: 10.3934/cpaa.2011.10.435

[12]

Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445

[13]

Zhigang Wu, Wenjun Wang. Uniform stability of the Boltzmann equation with an external force near vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 811-823. doi: 10.3934/cpaa.2015.14.811

[14]

Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141

[15]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365

[16]

Luis Barreira, Claudia Valls. Topological conjugacies and behavior at infinity. Communications on Pure & Applied Analysis, 2014, 13 (2) : 687-701. doi: 10.3934/cpaa.2014.13.687

[17]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[18]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[19]

Yingzhe Fan, Yuanjie Lei. The Boltzmann equation with frictional force for very soft potentials in the whole space. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4303-4329. doi: 10.3934/dcds.2019174

[20]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (4)

[Back to Top]