March  2011, 4(1): 187-213. doi: 10.3934/krm.2011.4.187

On a continuous mixed strategies model for evolutionary game theory

1. 

Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Università degli Studi “Sapienza” di Roma, Italy

2. 

Istituto per le Applicazioni del Calcolo “M. Picone”, CNR, c/o Dip. di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 1; I-00133 Roma

3. 

Dipartimento di Matematica & CMCS, Università degli Studi di Ferrara, Italy

Received  October 2010 Revised  November 2010 Published  January 2011

We consider an integro-differential model for evolutionary game theory which describes the evolution of a population adopting mixed strategies. Using a reformulation based on the first moments of the solution, we prove some analytical properties of the model and global estimates. The asymptotic behavior and the stability of solutions in the case of two strategies is analyzed in details. Numerical schemes for two and three strategies which are able to capture the correct equilibrium states are also proposed together with several numerical examples.
Citation: Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187
References:
[1]

P. Abrams, Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: An assessment of three methods,, Ecol. Lett., 4 (2001), 166.  doi: 10.1046/j.1461-0248.2001.00199.x.  Google Scholar

[2]

I. Bomze, Dynamical aspects of evolutionary stability,, Mon. Math., 110 (1990), 189.  doi: 10.1007/BF01301675.  Google Scholar

[3]

D. Challet, M. Marsili and Y-C. Zhang, "Minority Games: Interacting Agents in Financial Markets,", Oxford University Press, (2005).   Google Scholar

[4]

R. Cressman, Stability of the replicator equation with continuous strategy space,, Mathematical Social Sciences, 50 (2005), 127.  doi: 10.1016/j.mathsocsci.2005.03.001.  Google Scholar

[5]

L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations,, Commun. Math. Sci., 6 (2008), 729.   Google Scholar

[6]

D. Friedman, Towards evolutionary game models of financial markets,, Quantitative Finance 1, (2001).   Google Scholar

[7]

A. Galstyan, Continuous strategy replicator dynamics for multi-agent learning,, \arXiv{0904.4717v1}., ().   Google Scholar

[8]

S. Genieys, N. Bessonov and V. Volpert, Mathematical model of evolutionary branching,, Mathematical and Computer Modelling, 49 (2009), 2109.  doi: 10.1016/j.mcm.2008.07.018.  Google Scholar

[9]

J. Henriksson, T. Lundh and B. Wennberg, A model of sympatric speciation through reinforcement,, Kinet. Relat. Models, 3 (2010), 143.  doi: 10.3934/krm.2010.3.143.  Google Scholar

[10]

J. Hofbauer, J. Oechssler and F. Riedel, Brown-von Neumann-Nash dynamics: The continuous strategy case,, Games and Economic Behavior, 65 (2009), 406.  doi: 10.1016/j.geb.2008.03.006.  Google Scholar

[11]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics,", Cambridge University Press, (1998).   Google Scholar

[12]

T. W. L. Norman, Dynamically stable sets in infinite strategy spaces,, Games and Economic Behavior, 62 (2008), 610.  doi: 10.1016/j.geb.2007.05.005.  Google Scholar

[13]

J. Oechssler and F. Riedel, Evolutionary dynamics on infinite strategy spaces,, Econ. Theory, 17 (2001), 141.  doi: 10.1007/PL00004092.  Google Scholar

[14]

M. Ruijgrok and T. W. Ruijgrok, Replicator dynamics with mutations for games with a continuous strategy space,, \arXiv{nlin/0505032v2}., ().   Google Scholar

[15]

J. W. Weibull, "Evolutionary Game Theory,", MIT Press, (1995).   Google Scholar

show all references

References:
[1]

P. Abrams, Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: An assessment of three methods,, Ecol. Lett., 4 (2001), 166.  doi: 10.1046/j.1461-0248.2001.00199.x.  Google Scholar

[2]

I. Bomze, Dynamical aspects of evolutionary stability,, Mon. Math., 110 (1990), 189.  doi: 10.1007/BF01301675.  Google Scholar

[3]

D. Challet, M. Marsili and Y-C. Zhang, "Minority Games: Interacting Agents in Financial Markets,", Oxford University Press, (2005).   Google Scholar

[4]

R. Cressman, Stability of the replicator equation with continuous strategy space,, Mathematical Social Sciences, 50 (2005), 127.  doi: 10.1016/j.mathsocsci.2005.03.001.  Google Scholar

[5]

L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations,, Commun. Math. Sci., 6 (2008), 729.   Google Scholar

[6]

D. Friedman, Towards evolutionary game models of financial markets,, Quantitative Finance 1, (2001).   Google Scholar

[7]

A. Galstyan, Continuous strategy replicator dynamics for multi-agent learning,, \arXiv{0904.4717v1}., ().   Google Scholar

[8]

S. Genieys, N. Bessonov and V. Volpert, Mathematical model of evolutionary branching,, Mathematical and Computer Modelling, 49 (2009), 2109.  doi: 10.1016/j.mcm.2008.07.018.  Google Scholar

[9]

J. Henriksson, T. Lundh and B. Wennberg, A model of sympatric speciation through reinforcement,, Kinet. Relat. Models, 3 (2010), 143.  doi: 10.3934/krm.2010.3.143.  Google Scholar

[10]

J. Hofbauer, J. Oechssler and F. Riedel, Brown-von Neumann-Nash dynamics: The continuous strategy case,, Games and Economic Behavior, 65 (2009), 406.  doi: 10.1016/j.geb.2008.03.006.  Google Scholar

[11]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics,", Cambridge University Press, (1998).   Google Scholar

[12]

T. W. L. Norman, Dynamically stable sets in infinite strategy spaces,, Games and Economic Behavior, 62 (2008), 610.  doi: 10.1016/j.geb.2007.05.005.  Google Scholar

[13]

J. Oechssler and F. Riedel, Evolutionary dynamics on infinite strategy spaces,, Econ. Theory, 17 (2001), 141.  doi: 10.1007/PL00004092.  Google Scholar

[14]

M. Ruijgrok and T. W. Ruijgrok, Replicator dynamics with mutations for games with a continuous strategy space,, \arXiv{nlin/0505032v2}., ().   Google Scholar

[15]

J. W. Weibull, "Evolutionary Game Theory,", MIT Press, (1995).   Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[2]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[3]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[14]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[15]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[16]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[17]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (4)

[Back to Top]