-
Previous Article
On a charge interacting with a plasma of unbounded mass
- KRM Home
- This Issue
-
Next Article
Kinetic modeling of economic games with large number of participants
On a continuous mixed strategies model for evolutionary game theory
1. | Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Università degli Studi “Sapienza” di Roma, Italy |
2. | Istituto per le Applicazioni del Calcolo “M. Picone”, CNR, c/o Dip. di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 1; I-00133 Roma |
3. | Dipartimento di Matematica & CMCS, Università degli Studi di Ferrara, Italy |
References:
[1] |
P. Abrams, Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: An assessment of three methods, Ecol. Lett., 4 (2001), 166-175.
doi: 10.1046/j.1461-0248.2001.00199.x. |
[2] |
I. Bomze, Dynamical aspects of evolutionary stability, Mon. Math., 110 (1990), 189-206.
doi: 10.1007/BF01301675. |
[3] |
D. Challet, M. Marsili and Y-C. Zhang, "Minority Games: Interacting Agents in Financial Markets," Oxford University Press, 2005. |
[4] |
R. Cressman, Stability of the replicator equation with continuous strategy space, Mathematical Social Sciences, 50 (2005), 127-147.
doi: 10.1016/j.mathsocsci.2005.03.001. |
[5] |
L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729-747. |
[6] |
D. Friedman, Towards evolutionary game models of financial markets, Quantitative Finance 1, (2001) |
[7] |
A. Galstyan, Continuous strategy replicator dynamics for multi-agent learning, arXiv:0904.4717v1. |
[8] |
S. Genieys, N. Bessonov and V. Volpert, Mathematical model of evolutionary branching, Mathematical and Computer Modelling, 49 (2009), 2109-2115.
doi: 10.1016/j.mcm.2008.07.018. |
[9] |
J. Henriksson, T. Lundh and B. Wennberg, A model of sympatric speciation through reinforcement, Kinet. Relat. Models, 3 (2010), 143-163.
doi: 10.3934/krm.2010.3.143. |
[10] |
J. Hofbauer, J. Oechssler and F. Riedel, Brown-von Neumann-Nash dynamics: The continuous strategy case, Games and Economic Behavior, 65 (2009), 406-429.
doi: 10.1016/j.geb.2008.03.006. |
[11] |
J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, 1998. |
[12] |
T. W. L. Norman, Dynamically stable sets in infinite strategy spaces, Games and Economic Behavior, 62 (2008), 610-627.
doi: 10.1016/j.geb.2007.05.005. |
[13] |
J. Oechssler and F. Riedel, Evolutionary dynamics on infinite strategy spaces, Econ. Theory, 17 (2001), 141-162.
doi: 10.1007/PL00004092. |
[14] |
M. Ruijgrok and T. W. Ruijgrok, Replicator dynamics with mutations for games with a continuous strategy space, arXiv:nlin/0505032v2. |
[15] |
J. W. Weibull, "Evolutionary Game Theory," MIT Press, Cambridge, MA, 1995. |
show all references
References:
[1] |
P. Abrams, Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: An assessment of three methods, Ecol. Lett., 4 (2001), 166-175.
doi: 10.1046/j.1461-0248.2001.00199.x. |
[2] |
I. Bomze, Dynamical aspects of evolutionary stability, Mon. Math., 110 (1990), 189-206.
doi: 10.1007/BF01301675. |
[3] |
D. Challet, M. Marsili and Y-C. Zhang, "Minority Games: Interacting Agents in Financial Markets," Oxford University Press, 2005. |
[4] |
R. Cressman, Stability of the replicator equation with continuous strategy space, Mathematical Social Sciences, 50 (2005), 127-147.
doi: 10.1016/j.mathsocsci.2005.03.001. |
[5] |
L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729-747. |
[6] |
D. Friedman, Towards evolutionary game models of financial markets, Quantitative Finance 1, (2001) |
[7] |
A. Galstyan, Continuous strategy replicator dynamics for multi-agent learning, arXiv:0904.4717v1. |
[8] |
S. Genieys, N. Bessonov and V. Volpert, Mathematical model of evolutionary branching, Mathematical and Computer Modelling, 49 (2009), 2109-2115.
doi: 10.1016/j.mcm.2008.07.018. |
[9] |
J. Henriksson, T. Lundh and B. Wennberg, A model of sympatric speciation through reinforcement, Kinet. Relat. Models, 3 (2010), 143-163.
doi: 10.3934/krm.2010.3.143. |
[10] |
J. Hofbauer, J. Oechssler and F. Riedel, Brown-von Neumann-Nash dynamics: The continuous strategy case, Games and Economic Behavior, 65 (2009), 406-429.
doi: 10.1016/j.geb.2008.03.006. |
[11] |
J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, 1998. |
[12] |
T. W. L. Norman, Dynamically stable sets in infinite strategy spaces, Games and Economic Behavior, 62 (2008), 610-627.
doi: 10.1016/j.geb.2007.05.005. |
[13] |
J. Oechssler and F. Riedel, Evolutionary dynamics on infinite strategy spaces, Econ. Theory, 17 (2001), 141-162.
doi: 10.1007/PL00004092. |
[14] |
M. Ruijgrok and T. W. Ruijgrok, Replicator dynamics with mutations for games with a continuous strategy space, arXiv:nlin/0505032v2. |
[15] |
J. W. Weibull, "Evolutionary Game Theory," MIT Press, Cambridge, MA, 1995. |
[1] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic and Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[2] |
Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha. Stability of solutions of kinetic equations corresponding to the replicator dynamics. Kinetic and Related Models, 2014, 7 (1) : 109-119. doi: 10.3934/krm.2014.7.109 |
[3] |
Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic and Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001 |
[4] |
Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure and Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981 |
[5] |
Yadong Shu, Ying Dai, Zujun Ma. Evolutionary game theory analysis of supply chain with fairness concerns of retailers. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022098 |
[6] |
Xiulan Lai, Xingfu Zou. Dynamics of evolutionary competition between budding and lytic viral release strategies. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1091-1113. doi: 10.3934/mbe.2014.11.1091 |
[7] |
William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics and Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485 |
[8] |
Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 |
[9] |
Sylvain Sorin. Replicator dynamics: Old and new. Journal of Dynamics and Games, 2020, 7 (4) : 365-386. doi: 10.3934/jdg.2020028 |
[10] |
King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205 |
[11] |
Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025 |
[12] |
Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic and Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253 |
[13] |
Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic and Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1 |
[14] |
Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic and Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049 |
[15] |
Ross Cressman, Vlastimil Křivan. Using chemical reaction network theory to show stability of distributional dynamics in game theory. Journal of Dynamics and Games, 2021 doi: 10.3934/jdg.2021030 |
[16] |
Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289 |
[17] |
Vassilis G. Papanicolaou, Kyriaki Vasilakopoulou. Similarity solutions of a multidimensional replicator dynamics integrodifferential equation. Journal of Dynamics and Games, 2016, 3 (1) : 51-74. doi: 10.3934/jdg.2016003 |
[18] |
Saul Mendoza-Palacios, Onésimo Hernández-Lerma. Stability of the replicator dynamics for games in metric spaces. Journal of Dynamics and Games, 2017, 4 (4) : 319-333. doi: 10.3934/jdg.2017017 |
[19] |
Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034 |
[20] |
Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]