March  2011, 4(1): 215-226. doi: 10.3934/krm.2011.4.215

On a charge interacting with a plasma of unbounded mass

1. 

Dipartimento di Matematica, Università di Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma

2. 

Dipartimento di Matematica, Università La Sapienza, Piazzale Aldo Moro 2, 00185 Roma

Received  September 2010 Revised  November 2010 Published  January 2011

We consider a positive Vlasov-Helmholtz plasma in interaction with a positive point charge in $\R^2$ and we prove an existence and uniqueness theorem for this system without any assumption on the decay at infinity of the spatial density.
Citation: Silvia Caprino, Carlo Marchioro. On a charge interacting with a plasma of unbounded mass. Kinetic & Related Models, 2011, 4 (1) : 215-226. doi: 10.3934/krm.2011.4.215
References:
[1]

P. Butta', G. Ferrari and C. Marchioro, Speedy motions of a body immersed in an infinitely extended medium,, Jour. Stat. Phys., 140 (2010), 1182.   Google Scholar

[2]

E. Caglioti, S. Caprino, C. Marchioro and M. Pulvirenti, The Vlasov equation with infinite mass,, Arch. Rational Mech. Anal., 159 (2001), 85.  doi: 10.1007/s002050100150.  Google Scholar

[3]

S. Caprino and C. Marchioro, On the plasma-charge model,, Kinetic and Related Problems, 3 (2010), 241.   Google Scholar

[4]

S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass,, Commun. PDE, 27 (2002), 791.  doi: 10.1081/PDE-120002874.  Google Scholar

[5]

E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation I,, Math. Meth. Appl. Sci., 3 (1981), 229.  doi: 10.1002/mma.1670030117.  Google Scholar

[6]

E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II,, Math. Meth. Appl. Sci., 4 (1982), 19.  doi: 10.1002/mma.1670040104.  Google Scholar

[7]

P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1996), 415.  doi: 10.1007/BF01232273.  Google Scholar

[8]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density,, Jour. de Math. Pure Appl., 86 (2006), 68.   Google Scholar

[9]

A. Majda, G. Majda and Y. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. I. Temporal development and non-unique weak solutions in the single component case,, Phys. D, 74 (1994), 268.  doi: 10.1016/0167-2789(94)90198-8.  Google Scholar

[10]

A. Majda, G. Majda and Y. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. II. Screening and the necessity for measure-valued solutions in the two component case,, Phys. D, 79 (1994), 41.  doi: 10.1016/0167-2789(94)90037-X.  Google Scholar

[11]

C. Marchioro, E. Miot and M. Pulvirenti, The Cauchy problem for the 3-D Vlasov-Poisson system with point charges,, Arch. Rational Mech. Anal. (2010) in press., (2010).   Google Scholar

[12]

S. Okabe and T. Ukai, On classical solutions in the large in time for the two-dimensional Vlasov's equation,, Osaka Jour. Math., 15 (1978), 245.   Google Scholar

[13]

S. Pankavich, Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics,, Comm. PDE, 31 (2006), 349.  doi: 10.1080/03605300500358004.  Google Scholar

[14]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, Jour. Diff. Eq., 95 (1992), 281.  doi: 10.1016/0022-0396(92)90033-J.  Google Scholar

[15]

D. Salort, Transport equations with unbounded force fields and application to the Vlasov-Poisson equation,, Math. Mod. Meth. Appl. Sci., 19 (2009), 199.  doi: 10.1142/S0218202509003401.  Google Scholar

[16]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions,, Commun. PDE., 16 (1991), 1313.   Google Scholar

[17]

S. Wollman, Global in time solutions to the two-dimensional Vlasov-Poisson system,, Commun. Pure Appl. Math., 33 (1980), 173.  doi: 10.1002/cpa.3160330205.  Google Scholar

[18]

S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system,, Jour. Math. Anal. Appl., 176 (1993), 76.  doi: 10.1006/jmaa.1993.1200.  Google Scholar

[19]

Y. Zheng and A. Majda, Existence of global weak solutions to one-component Vlasov-Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data,, Comm. Pure Appl. Math., 47 (1994), 1365.  doi: 10.1002/cpa.3160471004.  Google Scholar

show all references

References:
[1]

P. Butta', G. Ferrari and C. Marchioro, Speedy motions of a body immersed in an infinitely extended medium,, Jour. Stat. Phys., 140 (2010), 1182.   Google Scholar

[2]

E. Caglioti, S. Caprino, C. Marchioro and M. Pulvirenti, The Vlasov equation with infinite mass,, Arch. Rational Mech. Anal., 159 (2001), 85.  doi: 10.1007/s002050100150.  Google Scholar

[3]

S. Caprino and C. Marchioro, On the plasma-charge model,, Kinetic and Related Problems, 3 (2010), 241.   Google Scholar

[4]

S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass,, Commun. PDE, 27 (2002), 791.  doi: 10.1081/PDE-120002874.  Google Scholar

[5]

E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation I,, Math. Meth. Appl. Sci., 3 (1981), 229.  doi: 10.1002/mma.1670030117.  Google Scholar

[6]

E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II,, Math. Meth. Appl. Sci., 4 (1982), 19.  doi: 10.1002/mma.1670040104.  Google Scholar

[7]

P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1996), 415.  doi: 10.1007/BF01232273.  Google Scholar

[8]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density,, Jour. de Math. Pure Appl., 86 (2006), 68.   Google Scholar

[9]

A. Majda, G. Majda and Y. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. I. Temporal development and non-unique weak solutions in the single component case,, Phys. D, 74 (1994), 268.  doi: 10.1016/0167-2789(94)90198-8.  Google Scholar

[10]

A. Majda, G. Majda and Y. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. II. Screening and the necessity for measure-valued solutions in the two component case,, Phys. D, 79 (1994), 41.  doi: 10.1016/0167-2789(94)90037-X.  Google Scholar

[11]

C. Marchioro, E. Miot and M. Pulvirenti, The Cauchy problem for the 3-D Vlasov-Poisson system with point charges,, Arch. Rational Mech. Anal. (2010) in press., (2010).   Google Scholar

[12]

S. Okabe and T. Ukai, On classical solutions in the large in time for the two-dimensional Vlasov's equation,, Osaka Jour. Math., 15 (1978), 245.   Google Scholar

[13]

S. Pankavich, Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics,, Comm. PDE, 31 (2006), 349.  doi: 10.1080/03605300500358004.  Google Scholar

[14]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, Jour. Diff. Eq., 95 (1992), 281.  doi: 10.1016/0022-0396(92)90033-J.  Google Scholar

[15]

D. Salort, Transport equations with unbounded force fields and application to the Vlasov-Poisson equation,, Math. Mod. Meth. Appl. Sci., 19 (2009), 199.  doi: 10.1142/S0218202509003401.  Google Scholar

[16]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions,, Commun. PDE., 16 (1991), 1313.   Google Scholar

[17]

S. Wollman, Global in time solutions to the two-dimensional Vlasov-Poisson system,, Commun. Pure Appl. Math., 33 (1980), 173.  doi: 10.1002/cpa.3160330205.  Google Scholar

[18]

S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system,, Jour. Math. Anal. Appl., 176 (1993), 76.  doi: 10.1006/jmaa.1993.1200.  Google Scholar

[19]

Y. Zheng and A. Majda, Existence of global weak solutions to one-component Vlasov-Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data,, Comm. Pure Appl. Math., 47 (1994), 1365.  doi: 10.1002/cpa.3160471004.  Google Scholar

[1]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004

[2]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[3]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[4]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[5]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[6]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[7]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[8]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[9]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[10]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[11]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[12]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[16]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[17]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[18]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[19]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[20]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]