-
Previous Article
Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system
- KRM Home
- This Issue
-
Next Article
On a continuous mixed strategies model for evolutionary game theory
On a charge interacting with a plasma of unbounded mass
1. | Dipartimento di Matematica, Università di Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma |
2. | Dipartimento di Matematica, Università La Sapienza, Piazzale Aldo Moro 2, 00185 Roma |
References:
[1] |
P. Butta', G. Ferrari and C. Marchioro, Speedy motions of a body immersed in an infinitely extended medium,, Jour. Stat. Phys., 140 (2010), 1182. Google Scholar |
[2] |
E. Caglioti, S. Caprino, C. Marchioro and M. Pulvirenti, The Vlasov equation with infinite mass,, Arch. Rational Mech. Anal., 159 (2001), 85.
doi: 10.1007/s002050100150. |
[3] |
S. Caprino and C. Marchioro, On the plasma-charge model,, Kinetic and Related Problems, 3 (2010), 241. Google Scholar |
[4] |
S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass,, Commun. PDE, 27 (2002), 791.
doi: 10.1081/PDE-120002874. |
[5] |
E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation I,, Math. Meth. Appl. Sci., 3 (1981), 229.
doi: 10.1002/mma.1670030117. |
[6] |
E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II,, Math. Meth. Appl. Sci., 4 (1982), 19.
doi: 10.1002/mma.1670040104. |
[7] |
P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1996), 415.
doi: 10.1007/BF01232273. |
[8] |
G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density,, Jour. de Math. Pure Appl., 86 (2006), 68.
|
[9] |
A. Majda, G. Majda and Y. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. I. Temporal development and non-unique weak solutions in the single component case,, Phys. D, 74 (1994), 268.
doi: 10.1016/0167-2789(94)90198-8. |
[10] |
A. Majda, G. Majda and Y. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. II. Screening and the necessity for measure-valued solutions in the two component case,, Phys. D, 79 (1994), 41.
doi: 10.1016/0167-2789(94)90037-X. |
[11] |
C. Marchioro, E. Miot and M. Pulvirenti, The Cauchy problem for the 3-D Vlasov-Poisson system with point charges,, Arch. Rational Mech. Anal. (2010) in press., (2010). Google Scholar |
[12] |
S. Okabe and T. Ukai, On classical solutions in the large in time for the two-dimensional Vlasov's equation,, Osaka Jour. Math., 15 (1978), 245.
|
[13] |
S. Pankavich, Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics,, Comm. PDE, 31 (2006), 349.
doi: 10.1080/03605300500358004. |
[14] |
K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, Jour. Diff. Eq., 95 (1992), 281.
doi: 10.1016/0022-0396(92)90033-J. |
[15] |
D. Salort, Transport equations with unbounded force fields and application to the Vlasov-Poisson equation,, Math. Mod. Meth. Appl. Sci., 19 (2009), 199.
doi: 10.1142/S0218202509003401. |
[16] |
J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions,, Commun. PDE., 16 (1991), 1313.
|
[17] |
S. Wollman, Global in time solutions to the two-dimensional Vlasov-Poisson system,, Commun. Pure Appl. Math., 33 (1980), 173.
doi: 10.1002/cpa.3160330205. |
[18] |
S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system,, Jour. Math. Anal. Appl., 176 (1993), 76.
doi: 10.1006/jmaa.1993.1200. |
[19] |
Y. Zheng and A. Majda, Existence of global weak solutions to one-component Vlasov-Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data,, Comm. Pure Appl. Math., 47 (1994), 1365.
doi: 10.1002/cpa.3160471004. |
show all references
References:
[1] |
P. Butta', G. Ferrari and C. Marchioro, Speedy motions of a body immersed in an infinitely extended medium,, Jour. Stat. Phys., 140 (2010), 1182. Google Scholar |
[2] |
E. Caglioti, S. Caprino, C. Marchioro and M. Pulvirenti, The Vlasov equation with infinite mass,, Arch. Rational Mech. Anal., 159 (2001), 85.
doi: 10.1007/s002050100150. |
[3] |
S. Caprino and C. Marchioro, On the plasma-charge model,, Kinetic and Related Problems, 3 (2010), 241. Google Scholar |
[4] |
S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass,, Commun. PDE, 27 (2002), 791.
doi: 10.1081/PDE-120002874. |
[5] |
E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation I,, Math. Meth. Appl. Sci., 3 (1981), 229.
doi: 10.1002/mma.1670030117. |
[6] |
E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II,, Math. Meth. Appl. Sci., 4 (1982), 19.
doi: 10.1002/mma.1670040104. |
[7] |
P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system,, Invent. Math., 105 (1996), 415.
doi: 10.1007/BF01232273. |
[8] |
G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density,, Jour. de Math. Pure Appl., 86 (2006), 68.
|
[9] |
A. Majda, G. Majda and Y. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. I. Temporal development and non-unique weak solutions in the single component case,, Phys. D, 74 (1994), 268.
doi: 10.1016/0167-2789(94)90198-8. |
[10] |
A. Majda, G. Majda and Y. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. II. Screening and the necessity for measure-valued solutions in the two component case,, Phys. D, 79 (1994), 41.
doi: 10.1016/0167-2789(94)90037-X. |
[11] |
C. Marchioro, E. Miot and M. Pulvirenti, The Cauchy problem for the 3-D Vlasov-Poisson system with point charges,, Arch. Rational Mech. Anal. (2010) in press., (2010). Google Scholar |
[12] |
S. Okabe and T. Ukai, On classical solutions in the large in time for the two-dimensional Vlasov's equation,, Osaka Jour. Math., 15 (1978), 245.
|
[13] |
S. Pankavich, Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics,, Comm. PDE, 31 (2006), 349.
doi: 10.1080/03605300500358004. |
[14] |
K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data,, Jour. Diff. Eq., 95 (1992), 281.
doi: 10.1016/0022-0396(92)90033-J. |
[15] |
D. Salort, Transport equations with unbounded force fields and application to the Vlasov-Poisson equation,, Math. Mod. Meth. Appl. Sci., 19 (2009), 199.
doi: 10.1142/S0218202509003401. |
[16] |
J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions,, Commun. PDE., 16 (1991), 1313.
|
[17] |
S. Wollman, Global in time solutions to the two-dimensional Vlasov-Poisson system,, Commun. Pure Appl. Math., 33 (1980), 173.
doi: 10.1002/cpa.3160330205. |
[18] |
S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system,, Jour. Math. Anal. Appl., 176 (1993), 76.
doi: 10.1006/jmaa.1993.1200. |
[19] |
Y. Zheng and A. Majda, Existence of global weak solutions to one-component Vlasov-Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data,, Comm. Pure Appl. Math., 47 (1994), 1365.
doi: 10.1002/cpa.3160471004. |
[1] |
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729 |
[2] |
Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015 |
[3] |
Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic & Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055 |
[4] |
P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1 |
[5] |
Siniša Slijepčević. Extended gradient systems: Dimension one. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 503-518. doi: 10.3934/dcds.2000.6.503 |
[6] |
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011 |
[7] |
Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020 |
[8] |
Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785 |
[9] |
Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i |
[10] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116 |
[11] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017 |
[12] |
Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020181 |
[13] |
Alberto Boscaggin, Anna Capietto. Infinitely many solutions to superquadratic planar Dirac-type systems. Conference Publications, 2009, 2009 (Special) : 72-81. doi: 10.3934/proc.2009.2009.72 |
[14] |
Helmut Rüssmann. KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 683-718. doi: 10.3934/dcdss.2010.3.683 |
[15] |
Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461 |
[16] |
Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267 |
[17] |
Lushun Wang, Minbo Yang, Yu Zheng. Infinitely many segregated solutions for coupled nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6069-6102. doi: 10.3934/dcds.2019265 |
[18] |
S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604 |
[19] |
Silvia Caprino, Carlo Marchioro. On the plasma-charge model. Kinetic & Related Models, 2010, 3 (2) : 241-254. doi: 10.3934/krm.2010.3.241 |
[20] |
John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333 |
2018 Impact Factor: 1.38
Tools
Metrics
Other articles
by authors
[Back to Top]