\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a charge interacting with a plasma of unbounded mass

Abstract / Introduction Related Papers Cited by
  • We consider a positive Vlasov-Helmholtz plasma in interaction with a positive point charge in $\R^2$ and we prove an existence and uniqueness theorem for this system without any assumption on the decay at infinity of the spatial density.
    Mathematics Subject Classification: Primary: 82D10, 35Q99; Secondary: 35L60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Butta', G. Ferrari and C. Marchioro, Speedy motions of a body immersed in an infinitely extended medium, Jour. Stat. Phys., 140 (2010), 1182-1194.

    [2]

    E. Caglioti, S. Caprino, C. Marchioro and M. Pulvirenti, The Vlasov equation with infinite mass, Arch. Rational Mech. Anal., 159 (2001), 85-108.doi: 10.1007/s002050100150.

    [3]

    S. Caprino and C. Marchioro, On the plasma-charge model, Kinetic and Related Problems, 3 (2010), 241-254.

    [4]

    S. Caprino, C. Marchioro and M. Pulvirenti, On the two dimensional Vlasov-Helmholtz equation with infinite mass, Commun. PDE, 27 (2002), 791-808.doi: 10.1081/PDE-120002874.

    [5]

    E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation I, Math. Meth. Appl. Sci., 3 (1981), 229-248.doi: 10.1002/mma.1670030117.

    [6]

    E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II, Math. Meth. Appl. Sci., 4 (1982), 19-32.doi: 10.1002/mma.1670040104.

    [7]

    P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1996), 415-430.doi: 10.1007/BF01232273.

    [8]

    G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, Jour. de Math. Pure Appl., 86 (2006), 68-79.

    [9]

    A. Majda, G. Majda and Y. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. I. Temporal development and non-unique weak solutions in the single component case, Phys. D, 74 (1994), 268-300.doi: 10.1016/0167-2789(94)90198-8.

    [10]

    A. Majda, G. Majda and Y. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. II. Screening and the necessity for measure-valued solutions in the two component case, Phys. D, 79 (1994), 41-76.doi: 10.1016/0167-2789(94)90037-X.

    [11]

    C. Marchioro, E. Miot and M. Pulvirenti, The Cauchy problem for the 3-D Vlasov-Poisson system with point charges, Arch. Rational Mech. Anal. (2010) in press.

    [12]

    S. Okabe and T. Ukai, On classical solutions in the large in time for the two-dimensional Vlasov's equation, Osaka Jour. Math., 15 (1978), 245-261.

    [13]

    S. Pankavich, Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics, Comm. PDE, 31 (2006), 349-370.doi: 10.1080/03605300500358004.

    [14]

    K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, Jour. Diff. Eq., 95 (1992), 281-303.doi: 10.1016/0022-0396(92)90033-J.

    [15]

    D. Salort, Transport equations with unbounded force fields and application to the Vlasov-Poisson equation, Math. Mod. Meth. Appl. Sci., 19 (2009), 199-228.doi: 10.1142/S0218202509003401.

    [16]

    J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. PDE., 16 (1991), 1313-1335.

    [17]

    S. Wollman, Global in time solutions to the two-dimensional Vlasov-Poisson system, Commun. Pure Appl. Math., 33 (1980), 173-197.doi: 10.1002/cpa.3160330205.

    [18]

    S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system, Jour. Math. Anal. Appl., 176 (1993), 76-91.doi: 10.1006/jmaa.1993.1200.

    [19]

    Y. Zheng and A. Majda, Existence of global weak solutions to one-component Vlasov-Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data, Comm. Pure Appl. Math., 47 (1994), 1365-1401.doi: 10.1002/cpa.3160471004.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return