Citation: |
[1] |
M. Aizenman and T. Bak, Convergence to equilibrium in a system of reacting polymers, Comm. Math. Phys., 65 (1979), 203-230.doi: 10.1007/BF01197880. |
[2] |
R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal., 152 (2000), 327-355.doi: 10.1007/s002050000083. |
[3] |
R. Alexandre and C. Villani, On the Boltzmann equation for long-range interactions, Comm. Pure Appl. Math., 55 (2002), 30-70.doi: 10.1002/cpa.10012. |
[4] |
R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 61-95. |
[5] |
R. Alonso, J. Cañizo, I. Gamba and C. Mouhot, Exponential moments for the spatially homogeneous Boltzmann equation, Work in progress. |
[6] |
L. Arkeryd, R. Esposito and M. Pulvirenti, The Boltzmann equation for weakly inhomogeneous data, Comm. Math. Phys., 111 (1987), 393-407.doi: 10.1007/BF01238905. |
[7] |
A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, Mat. Sb., 181 (1990), 435-446. |
[8] |
D. Bakry and M. Emery, Diffusions hypercontractives, Sém. Proba. XIX, Lecture Notes in Math., 1123 (1985), 177-206.doi: 10.1007/BFb0075847. |
[9] |
C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841. |
[10] |
A. V. Bobylev, Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwell gas, Teoret. Mat. Fiz., 60 (1984), 280-310. |
[11] |
A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, In "Mathematical Physics Reviews," Vol. 7 of "Soviet Sci. Rev. Sect. C Math. Phys. Rev.," Harwood Academic Publ., Chur, 1988, pp. 111-233. |
[12] |
A. V. Bobylev, Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems, J. Stat. Phys., 88 (1997), 1183-1214.doi: 10.1007/BF02732431. |
[13] |
A. V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation, J. Stat. Phys., 94 (1999), 603-618.doi: 10.1023/A:1004537522686. |
[14] |
A. V. Bobylev, I. M. Gamba and V. A. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions, J. Statist. Phys., 116 (2004), 1651-1682.doi: 10.1023/B:JOSS.0000041751.11664.ea. |
[15] |
L. Boltzmann, Weitere studien uber das wärme gleichgenicht unfer gasmoläkuler, Sitzungsberichte der Akademie der Wissenschaften, 66 (1872), 265-370. Translation: Further studies on the thermal equilibrium of gas molecules, in Kinetic Theory 2, 88-174, Ed. S.G. Brush, Pergamon, Oxford (1966). |
[16] |
R. E. Caflisch, The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Comm. Math. Phys., 74 (1980), 71-95. |
[17] |
T. Carleman, "Problèmes Mathématiques dans la Théorie Cinétique des Gaz," Almqvist & Wiksell, 1957. |
[18] |
E. A. Carlen and M. Carvalho, Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation, J. Stat. Phys., 67 (1992), 575-608.doi: 10.1007/BF01049721. |
[19] |
E. A. Carlen and M. Carvalho, Entropy production estimates for Boltzmann equations with physically realistic collision kernels, J. Stat. Phys., 74 (1994), 743-782.doi: 10.1007/BF02188578. |
[20] |
E. A. Carlen, M. C. Carvalho and E. Gabetta, Central limit theorem for Maxwellian molecules and truncation of the Wild expansion, Comm. Pure Appl. Math., 53 (2000), 370-397.doi: 10.1002/(SICI)1097-0312(200003)53:3<370::AID-CPA4>3.0.CO;2-0. |
[21] |
E. A. Carlen, M. C. Carvalho and E. Gabetta, On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation, J. Funct. Anal., 220 (2005), 362-387.doi: 10.1016/j.jfa.2004.06.011. |
[22] |
E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model, Kinet. Relat. Models, 3 (2010), 85-122.doi: 10.3934/krm.2010.3.85. |
[23] |
E. A. Carlen, M. C. Carvalho and M. Loss, Determination of the spectral gap for Kac's master equation and related stochastic evolution, Acta Math., 191 (2003), 1-54.doi: 10.1007/BF02392695. |
[24] |
E. A. Carlen, M. C. Carvalho and X. Lu, On strong convergence to equilibrium for the Boltzmann equation with soft potentials, J. Stat. Phys., 135 (2009), 681-736.doi: 10.1007/s10955-009-9741-1. |
[25] |
E. A. Carlen, M. C. Carvalho and B. Wennberg, Entropic convergence for solutions of the Boltzmann equation with general physical initial data, Transport Theory Statist. Phys., 26 (1997), 373-378.doi: 10.1080/00411459708020293. |
[26] |
E. A. Carlen, E. Gabetta and G. Toscani, Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas, Comm. Math. Phys., 199 (1999), 521-546.doi: 10.1007/s002200050511. |
[27] |
E. A. Carlen and X. Lu, Fast and slow convergence to equilibrium for Maxwellian molecules via Wild sums, J. Stat. Phys., 112 (2003), 59-134.doi: 10.1023/A:1023623503092. |
[28] |
C. Cercignani, "Theory and Application of the Boltzmann Equation," Elsevier, New York, 1975. |
[29] |
C. Cercignani, $H$-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. (Arch. Mech. Stos.), 34 (1982), 231-241 (1983). |
[30] |
I. Csiszar, Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung., 2 (1967), 299-318. |
[31] |
P. Degond and M. Lemou, Dispersion relations for the linearized Fokker-Planck equation, Arch. Rational Mech. Anal., 138 (1997), 137-167.doi: 10.1007/s002050050038. |
[32] |
P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci., 2 (1992), 167-182.doi: 10.1142/S0218202592000119. |
[33] |
L. Desvillettes, Entropy dissipation rate and convergence in kinetic equations, Comm. Math. Phys., 123 (1989), 687-702.doi: 10.1007/BF01218592. |
[34] |
L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing, Transport Theory Statist. Phys., 21 (1992), 259-276.doi: 10.1080/00411459208203923. |
[35] |
L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations, Arch. Rational Mech. Anal., 123 (1993), 387-404.doi: 10.1007/BF00375586. |
[36] |
L. Desvillettes and C. Mouhot, About Cercignani's conjecture, Work in progress. |
[37] |
L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, 25 (2000), 179-259. |
[38] |
L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. $H$-theorem and applications, Comm. Partial Differential Equations, 25 (2000), 261-298. |
[39] |
L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42.doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q. |
[40] |
L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245-316.doi: 10.1007/s00222-004-0389-9. |
[41] |
P. Diaconis and L. Saloff-Coste, Bounds for Kac's master equation, Comm. Math. Phys., 209 (2000), 729-755.doi: 10.1007/s002200050036. |
[42] |
I. M. Gamba, V. Panferov and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 194 (2009), 253-282.doi: 10.1007/s00205-009-0250-9. |
[43] |
F. Golse and F. Poupaud, Un résultat de compacité pour l'équation de Boltzmann avec potentiel mou. Application au problème de demi-espace, C. R. Acad. Sci. Paris Sér. I Math., 303 (1986), 583-586. |
[44] |
H. Grad, Asymptotic theory of the Boltzmann equation. II, In "Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Vol. I," Academic Press, New York, 1963, pp. 26-59. |
[45] |
P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation with long-range interactions, Proc. Natl. Acad. Sci. USA, 107 (2010), 5744-5749.doi: 10.1073/pnas.1001185107. |
[46] |
L. Gross, Hypercontractivity and logarithmic Sobolev inequalities for the Clifford Dirichlet form, Duke Math. J., 42 (1975), 383-396.doi: 10.1215/S0012-7094-75-04237-4. |
[47] |
M. P. Gualdani, S. Mischler and C. Mouhot, Factorization for non-symmetric operators and exponential H-theorem, preprint arXiv:1006.5523 (2010). |
[48] |
Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys., 231 (2002), 391-434.doi: 10.1007/s00220-002-0729-9. |
[49] |
F. Hérau and K. Pravda-Starov, Anisotropic hypoelliptic estimates for Landau-type operators, preprint arXiv:1003.3265 (2010). |
[50] |
D. Hilbert, "Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen," Math. Ann., 72 (1912). Chelsea Publ., New York, 1953. |
[51] |
E. Janvresse, Spectral gap for Kac's model of Boltzmann equation, Ann. Probab., 29 (2001), 288-304.doi: 10.1214/aop/1008956330. |
[52] |
M. Kac, Foundations of kinetic theory, In "Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, vol. III" (Berkeley and Los Angeles, 1956), University of California Press, pp. 171-197. |
[53] |
M. Klaus, Boltzmann collision operator without cut-off, Helv. Phys. Acta, 50 (1977), 893-903. |
[54] |
S. Kullback, A lower bound for discrimination information in terms of variation, IEEE Trans. Inf. The., 4 (1967), 126-127.doi: 10.1109/TIT.1967.1053968. |
[55] |
L. Landau, Die kinetische gleichung für den fall coulombscher wechselwirkung, Phys. Z. Sowjet., 154 (1936). Translation: The transport equation in the case of Coulomb interactions, in D. ter Haar, ed., Collected papers of L.D. Landau, pp. 163-170. Pergamon Press, Oxford, 1981. |
[56] |
P.-L. Lions, Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 37-41. |
[57] |
D. K. Maslen, The eigenvalues of Kac's master equation, Math. Z., 243 (2003), 291-331.doi: 10.1007/s00209-002-0466-y. |
[58] |
J. C. Maxwell, On the dynamical theory of gases, Philos. Trans. Roy. Soc. London Ser. A, 157 (1867), 49-88.doi: 10.1098/rstl.1867.0004. |
[59] |
S. Mischler and C. Mouhot, Quantitative uniform in time chaos propagation for Boltzmann collision processes, preprint arXiv:1001.2994 (2010). |
[60] |
S. Mischler and C. Mouhot, Cooling process for inelastic Boltzmann equations for hard spheres. II. Self-similar solutions and tail behavior, J. Stat. Phys., 124 (2006), 703-746.doi: 10.1007/s10955-006-9097-8. |
[61] |
C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348. |
[62] |
C. Mouhot, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys., 261 (2006), 629-672.doi: 10.1007/s00220-005-1455-x. |
[63] |
C. Mouhot, Quantitative linearized study of the Boltzmann collision operator and applications, Comm. Math. Sci. suppl., 1 (2007), 73-86. |
[64] |
C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.doi: 10.1088/0951-7715/19/4/011. |
[65] |
C. Mouhot, E. Russ and Y. Sire, Fractional Poincaré inequalities for general measures, To appear in J. Math. Pures. Appl. |
[66] |
C. Mouhot and R. M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9), 87 (2007), 515-535.doi: 10.1016/j.matpur.2007.03.003. |
[67] |
Y. P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. I II, Comm. Pure Appl. Math., 27 (1974), 407-428; ibid., 27 (1974), 559-581. |
[68] |
G. Toscani, Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation, Quart. Appl. Math., 57 (1999), 521-541. |
[69] |
G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys., 203 (1999), 667-706.doi: 10.1007/s002200050631. |
[70] |
G. Toscani and C. Villani, On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Stat. Phys., 98 (2000), 1279-1309.doi: 10.1023/A:1018623930325. |
[71] |
C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.doi: 10.1007/s002050050106. |
[72] |
C. Villani, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off, Rev. Mat. Iberoamericana, 15 (1999), 335-352. |
[73] |
C. Villani, "Contribution à L'étude Mathématique des Collisions en Théorie Cinétique (HDR)," PhD thesis, Univ. Paris Dauphine, France, 2000. |
[74] |
C. Villani, A review of mathematical topics in collisional kinetic theory, In "Handbook of Mathematical Fluid Dynamics, Vol. I," North-Holland, Amsterdam, 2002, pp. 71-305.doi: 10.1016/S1874-5792(02)80004-0. |
[75] |
C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490.doi: 10.1007/s00220-002-0777-1. |
[76] |
C. Villani, "Topics in Optimal Transportation," vol. 58 of "Graduate Studies in Mathematics," American Mathematical Society, Providence, RI, 2003. |
[77] |
C. S. Wang Chang, G. E. Uhlenbeck and J. de Boer, In "Studies in Statistical Mechanics, Vol. V," North-Holland, Amsterdam, 1970. |
[78] |
B. Wennberg, Stability and exponential convergence in $L\sp p$ for the spatially homogeneous Boltzmann equation, Nonlinear Anal., 20 (1993), 935-964.doi: 10.1016/0362-546X(93)90086-8. |
[79] |
B. Wennberg, Entropy dissipation and moment production for the Boltzmann equation, J. Stat. Phys., 86 (1997), 1053-1066.doi: 10.1007/BF02183613. |