March  2011, 4(1): 317-331. doi: 10.3934/krm.2011.4.317

Fourteen moment theory for granular gases

1. 

Departamento de Física, Universidade Federal do Paraná, Curitiba, Brazil

2. 

Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-990 Curitiba, Brazil

Received  August 2010 Revised  December 2010 Published  January 2011

A fourteen moment theory for a granular gas is developed within the framework of the Boltzmann equation where the full contracted moment of fourth order is added to the thirteen moments of mass density, velocity, pressure tensor and heat flux vector. The spatially homogeneous solutions of the fourteen moment theory implied into a time decay of the temperature field which follows closely Haff's law, besides the more accentuated time decays of the pressure deviator, heat flux vector and fourth moment. The requirement that the fourth moment remains constant in time inferred into its identification with the coefficient $a_2$ in the Chapman-Enskog solution of the Boltzmann equation. The laws of Navier-Stokes and Fourier are obtained by restricting to a five field theory and using a method akin to the Maxwellian procedure. The dependence of the heat flux vector on the gradient of the particle number density was obtained thanks to the inclusion of the forth moment. The analysis of the dynamic behavior of small local disturbances from the spatially homogeneous solutions caused by spontaneous internal fluctuations is performed by considering a thirteen field theory and it is shown that for the longitudinal disturbances there exist one hydrodynamic and four kinetic modes, while for the transverse disturbances one hydrodynamic and two kinetic modes are present.
Citation: Gilberto M. Kremer, Wilson Marques Jr.. Fourteen moment theory for granular gases. Kinetic & Related Models, 2011, 4 (1) : 317-331. doi: 10.3934/krm.2011.4.317
References:
[1]

C. K. K. Lun, S. B. Savage, D. J. Jeffrey and N. Chepurniy, Kinetic theories for granular flow: Inelastic particles in Couette-flow and slightly inelastic particles in a general flowfield,, J. Fluid Mech., 140 (1984), 223.  doi: 10.1017/S0022112084000586.  Google Scholar

[2]

J. T. Jenkins and M. W. Richman, Grad's 13-Moment system for a dense gas of inelastic spheres,, Arch. Ration. Mech. Anal., 87 (1985), 355.  doi: 10.1007/BF00250919.  Google Scholar

[3]

J. T. Jenkins and M. W. Richman, Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks,, Phys. Fluids, 28 (1985), 3485.  doi: 10.1063/1.865302.  Google Scholar

[4]

A. Goldshtein and M. Shapiro, Mechanics of collisional motion of granular-materials. 1. General hydrodynamic equations,, J. Fluid Mech., 282 (1995), 75.  doi: 10.1017/S0022112095000048.  Google Scholar

[5]

J. J. Brey, J. W. Dufty, C. S. Kim and A. Santos, Hydrodynamics for granular flow at low density,, Phys. Rev. E, 58 (1998), 4638.  doi: 10.1103/PhysRevE.58.4638.  Google Scholar

[6]

T. Pöschel and S. Luding (Editors), "Granular Gases,'', Springer-Verlag, (2001).   Google Scholar

[7]

T. Pöschel and N. V. Brilliantov (Editors), "Granular Gas Dynamics,'', Springer-Verlag, (2003).   Google Scholar

[8]

N. V. Brilliantov and T. Pöschel, "Kinetic Theory of Granular Gases,'', Oxford University Press, (2004).  doi: 10.1093/acprof:oso/9780198530381.001.0001.  Google Scholar

[9]

M. Bisi, G. Spiga and G. Toscani, Grad's equations and hydrodynamics for weakly inelastic granular flows,, Phys. Fluids, 16 (2004), 4235.  doi: 10.1063/1.1805371.  Google Scholar

[10]

G. M. Kremer, Extended thermodynamics of ideal gases with 14 fields,, Ann. Inst. Henri Poincaré, 45 (1986), 419.   Google Scholar

[11]

D. Risso and P. Cordero, Dynamics of rarefied granular gases,, Phys. Rev. E, 65 (2002), 021304.  doi: 10.1103/PhysRevE.65.021304.  Google Scholar

[12]

E. Ikenberry and C. Truesdell, On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory, I.,, J. Rational Mech. Anal., 5 (1956), 1.   Google Scholar

[13]

J. J. Brey, F. Moreno and J. W. Dufty, Model kinetic equation for low-density granular flow,, Phys. Rev. E, 54 (1996), 445.  doi: 10.1103/PhysRevE.54.445.  Google Scholar

show all references

References:
[1]

C. K. K. Lun, S. B. Savage, D. J. Jeffrey and N. Chepurniy, Kinetic theories for granular flow: Inelastic particles in Couette-flow and slightly inelastic particles in a general flowfield,, J. Fluid Mech., 140 (1984), 223.  doi: 10.1017/S0022112084000586.  Google Scholar

[2]

J. T. Jenkins and M. W. Richman, Grad's 13-Moment system for a dense gas of inelastic spheres,, Arch. Ration. Mech. Anal., 87 (1985), 355.  doi: 10.1007/BF00250919.  Google Scholar

[3]

J. T. Jenkins and M. W. Richman, Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks,, Phys. Fluids, 28 (1985), 3485.  doi: 10.1063/1.865302.  Google Scholar

[4]

A. Goldshtein and M. Shapiro, Mechanics of collisional motion of granular-materials. 1. General hydrodynamic equations,, J. Fluid Mech., 282 (1995), 75.  doi: 10.1017/S0022112095000048.  Google Scholar

[5]

J. J. Brey, J. W. Dufty, C. S. Kim and A. Santos, Hydrodynamics for granular flow at low density,, Phys. Rev. E, 58 (1998), 4638.  doi: 10.1103/PhysRevE.58.4638.  Google Scholar

[6]

T. Pöschel and S. Luding (Editors), "Granular Gases,'', Springer-Verlag, (2001).   Google Scholar

[7]

T. Pöschel and N. V. Brilliantov (Editors), "Granular Gas Dynamics,'', Springer-Verlag, (2003).   Google Scholar

[8]

N. V. Brilliantov and T. Pöschel, "Kinetic Theory of Granular Gases,'', Oxford University Press, (2004).  doi: 10.1093/acprof:oso/9780198530381.001.0001.  Google Scholar

[9]

M. Bisi, G. Spiga and G. Toscani, Grad's equations and hydrodynamics for weakly inelastic granular flows,, Phys. Fluids, 16 (2004), 4235.  doi: 10.1063/1.1805371.  Google Scholar

[10]

G. M. Kremer, Extended thermodynamics of ideal gases with 14 fields,, Ann. Inst. Henri Poincaré, 45 (1986), 419.   Google Scholar

[11]

D. Risso and P. Cordero, Dynamics of rarefied granular gases,, Phys. Rev. E, 65 (2002), 021304.  doi: 10.1103/PhysRevE.65.021304.  Google Scholar

[12]

E. Ikenberry and C. Truesdell, On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory, I.,, J. Rational Mech. Anal., 5 (1956), 1.   Google Scholar

[13]

J. J. Brey, F. Moreno and J. W. Dufty, Model kinetic equation for low-density granular flow,, Phys. Rev. E, 54 (1996), 445.  doi: 10.1103/PhysRevE.54.445.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[3]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[6]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[7]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[8]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[9]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[10]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[13]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[14]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[15]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[20]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]