March  2011, 4(1): 317-331. doi: 10.3934/krm.2011.4.317

Fourteen moment theory for granular gases

1. 

Departamento de Física, Universidade Federal do Paraná, Curitiba, Brazil

2. 

Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-990 Curitiba, Brazil

Received  August 2010 Revised  December 2010 Published  January 2011

A fourteen moment theory for a granular gas is developed within the framework of the Boltzmann equation where the full contracted moment of fourth order is added to the thirteen moments of mass density, velocity, pressure tensor and heat flux vector. The spatially homogeneous solutions of the fourteen moment theory implied into a time decay of the temperature field which follows closely Haff's law, besides the more accentuated time decays of the pressure deviator, heat flux vector and fourth moment. The requirement that the fourth moment remains constant in time inferred into its identification with the coefficient $a_2$ in the Chapman-Enskog solution of the Boltzmann equation. The laws of Navier-Stokes and Fourier are obtained by restricting to a five field theory and using a method akin to the Maxwellian procedure. The dependence of the heat flux vector on the gradient of the particle number density was obtained thanks to the inclusion of the forth moment. The analysis of the dynamic behavior of small local disturbances from the spatially homogeneous solutions caused by spontaneous internal fluctuations is performed by considering a thirteen field theory and it is shown that for the longitudinal disturbances there exist one hydrodynamic and four kinetic modes, while for the transverse disturbances one hydrodynamic and two kinetic modes are present.
Citation: Gilberto M. Kremer, Wilson Marques Jr.. Fourteen moment theory for granular gases. Kinetic & Related Models, 2011, 4 (1) : 317-331. doi: 10.3934/krm.2011.4.317
References:
[1]

C. K. K. Lun, S. B. Savage, D. J. Jeffrey and N. Chepurniy, Kinetic theories for granular flow: Inelastic particles in Couette-flow and slightly inelastic particles in a general flowfield,, J. Fluid Mech., 140 (1984), 223. doi: 10.1017/S0022112084000586. Google Scholar

[2]

J. T. Jenkins and M. W. Richman, Grad's 13-Moment system for a dense gas of inelastic spheres,, Arch. Ration. Mech. Anal., 87 (1985), 355. doi: 10.1007/BF00250919. Google Scholar

[3]

J. T. Jenkins and M. W. Richman, Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks,, Phys. Fluids, 28 (1985), 3485. doi: 10.1063/1.865302. Google Scholar

[4]

A. Goldshtein and M. Shapiro, Mechanics of collisional motion of granular-materials. 1. General hydrodynamic equations,, J. Fluid Mech., 282 (1995), 75. doi: 10.1017/S0022112095000048. Google Scholar

[5]

J. J. Brey, J. W. Dufty, C. S. Kim and A. Santos, Hydrodynamics for granular flow at low density,, Phys. Rev. E, 58 (1998), 4638. doi: 10.1103/PhysRevE.58.4638. Google Scholar

[6]

T. Pöschel and S. Luding (Editors), "Granular Gases,'', Springer-Verlag, (2001). Google Scholar

[7]

T. Pöschel and N. V. Brilliantov (Editors), "Granular Gas Dynamics,'', Springer-Verlag, (2003). Google Scholar

[8]

N. V. Brilliantov and T. Pöschel, "Kinetic Theory of Granular Gases,'', Oxford University Press, (2004). doi: 10.1093/acprof:oso/9780198530381.001.0001. Google Scholar

[9]

M. Bisi, G. Spiga and G. Toscani, Grad's equations and hydrodynamics for weakly inelastic granular flows,, Phys. Fluids, 16 (2004), 4235. doi: 10.1063/1.1805371. Google Scholar

[10]

G. M. Kremer, Extended thermodynamics of ideal gases with 14 fields,, Ann. Inst. Henri Poincaré, 45 (1986), 419. Google Scholar

[11]

D. Risso and P. Cordero, Dynamics of rarefied granular gases,, Phys. Rev. E, 65 (2002), 021304. doi: 10.1103/PhysRevE.65.021304. Google Scholar

[12]

E. Ikenberry and C. Truesdell, On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory, I.,, J. Rational Mech. Anal., 5 (1956), 1. Google Scholar

[13]

J. J. Brey, F. Moreno and J. W. Dufty, Model kinetic equation for low-density granular flow,, Phys. Rev. E, 54 (1996), 445. doi: 10.1103/PhysRevE.54.445. Google Scholar

show all references

References:
[1]

C. K. K. Lun, S. B. Savage, D. J. Jeffrey and N. Chepurniy, Kinetic theories for granular flow: Inelastic particles in Couette-flow and slightly inelastic particles in a general flowfield,, J. Fluid Mech., 140 (1984), 223. doi: 10.1017/S0022112084000586. Google Scholar

[2]

J. T. Jenkins and M. W. Richman, Grad's 13-Moment system for a dense gas of inelastic spheres,, Arch. Ration. Mech. Anal., 87 (1985), 355. doi: 10.1007/BF00250919. Google Scholar

[3]

J. T. Jenkins and M. W. Richman, Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks,, Phys. Fluids, 28 (1985), 3485. doi: 10.1063/1.865302. Google Scholar

[4]

A. Goldshtein and M. Shapiro, Mechanics of collisional motion of granular-materials. 1. General hydrodynamic equations,, J. Fluid Mech., 282 (1995), 75. doi: 10.1017/S0022112095000048. Google Scholar

[5]

J. J. Brey, J. W. Dufty, C. S. Kim and A. Santos, Hydrodynamics for granular flow at low density,, Phys. Rev. E, 58 (1998), 4638. doi: 10.1103/PhysRevE.58.4638. Google Scholar

[6]

T. Pöschel and S. Luding (Editors), "Granular Gases,'', Springer-Verlag, (2001). Google Scholar

[7]

T. Pöschel and N. V. Brilliantov (Editors), "Granular Gas Dynamics,'', Springer-Verlag, (2003). Google Scholar

[8]

N. V. Brilliantov and T. Pöschel, "Kinetic Theory of Granular Gases,'', Oxford University Press, (2004). doi: 10.1093/acprof:oso/9780198530381.001.0001. Google Scholar

[9]

M. Bisi, G. Spiga and G. Toscani, Grad's equations and hydrodynamics for weakly inelastic granular flows,, Phys. Fluids, 16 (2004), 4235. doi: 10.1063/1.1805371. Google Scholar

[10]

G. M. Kremer, Extended thermodynamics of ideal gases with 14 fields,, Ann. Inst. Henri Poincaré, 45 (1986), 419. Google Scholar

[11]

D. Risso and P. Cordero, Dynamics of rarefied granular gases,, Phys. Rev. E, 65 (2002), 021304. doi: 10.1103/PhysRevE.65.021304. Google Scholar

[12]

E. Ikenberry and C. Truesdell, On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory, I.,, J. Rational Mech. Anal., 5 (1956), 1. Google Scholar

[13]

J. J. Brey, F. Moreno and J. W. Dufty, Model kinetic equation for low-density granular flow,, Phys. Rev. E, 54 (1996), 445. doi: 10.1103/PhysRevE.54.445. Google Scholar

[1]

Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204

[2]

Milana Pavić-Čolić, Maja Tasković. Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules. Kinetic & Related Models, 2018, 11 (3) : 597-613. doi: 10.3934/krm.2018025

[3]

Stéphane Mischler, Clément Mouhot. Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 159-185. doi: 10.3934/dcds.2009.24.159

[4]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[5]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[6]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[7]

Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021

[8]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[9]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[10]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic & Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[11]

Graham W. Alldredge, Ruo Li, Weiming Li. Approximating the $M_2$ method by the extended quadrature method of moments for radiative transfer in slab geometry. Kinetic & Related Models, 2016, 9 (2) : 237-249. doi: 10.3934/krm.2016.9.237

[12]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[13]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[14]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic & Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[15]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[16]

Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic & Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237

[17]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic & Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

[18]

Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579

[19]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[20]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]