March  2011, 4(1): 333-344. doi: 10.3934/krm.2011.4.333

On the Kac model for the Landau equation

1. 

Laboratoire de Mathématiques, Université Paris-Sud 11, bât. 425, 91405 Orsay, France

2. 

Dipartimento di Matematica Guido Castelnuovo, Università La Sapienza - Roma, P.le A. Moro, 5 00185 Roma, Italy, Italy

Received  October 2010 Revised  October 2010 Published  January 2011

We introduce a $N$-particle system which approximates, in the mean-field limit, the solutions of the Landau equation with Coulomb singularity. This model plays the same role as the Kac's model for the homogeneous Boltzmann equation. We use compactness arguments following [11].
Citation: Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic & Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333
References:
[1]

A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, (Russian),, Mat. Sb., 181 (1992), 435.   Google Scholar

[2]

R. Balescu, "Equilibrium and Nonequilibrium Statistical Mechanics,'', John Wiley & Sons, (1975).   Google Scholar

[3]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. $H$-theorem and applications,, Comm. Partial Differential Equations, 25 (2000), 261.  doi: 10.1080/03605300008821513.  Google Scholar

[4]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness,, Comm. Partial Differential Equations, 25 (2000), 179.  doi: 10.1080/03605300008821512.  Google Scholar

[5]

T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions,, J. Stat. Phys., 89 (1997), 751.  doi: 10.1007/BF02765543.  Google Scholar

[6]

M. Kac, Foundations of kinetic theory,, in, (1956).   Google Scholar

[7]

A. I. Khinchin, "Mathematical Foundations of Information Theory,", New York: Dover, (1957).   Google Scholar

[8]

L. P. Pitaevskii and E. M. Lifshitz, "Course of Theoretical Physics. Vol. 10,", Pergamon Press, (1981).   Google Scholar

[9]

R. Peyre, Some ideas about quantitative convergence of collision models to their mean field limit,, J. Stat. Phys., 136 (2009), 1105.  doi: 10.1007/s10955-009-9820-3.  Google Scholar

[10]

M. Pulvirenti, The weak-coupling limit of large classical and quantum systems,, in, (2006).   Google Scholar

[11]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273.  doi: 10.1007/s002050050106.  Google Scholar

show all references

References:
[1]

A. A. Arsen'ev and O. E. Buryak, On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation, (Russian),, Mat. Sb., 181 (1992), 435.   Google Scholar

[2]

R. Balescu, "Equilibrium and Nonequilibrium Statistical Mechanics,'', John Wiley & Sons, (1975).   Google Scholar

[3]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. $H$-theorem and applications,, Comm. Partial Differential Equations, 25 (2000), 261.  doi: 10.1080/03605300008821513.  Google Scholar

[4]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness,, Comm. Partial Differential Equations, 25 (2000), 179.  doi: 10.1080/03605300008821512.  Google Scholar

[5]

T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence of grazing collisions,, J. Stat. Phys., 89 (1997), 751.  doi: 10.1007/BF02765543.  Google Scholar

[6]

M. Kac, Foundations of kinetic theory,, in, (1956).   Google Scholar

[7]

A. I. Khinchin, "Mathematical Foundations of Information Theory,", New York: Dover, (1957).   Google Scholar

[8]

L. P. Pitaevskii and E. M. Lifshitz, "Course of Theoretical Physics. Vol. 10,", Pergamon Press, (1981).   Google Scholar

[9]

R. Peyre, Some ideas about quantitative convergence of collision models to their mean field limit,, J. Stat. Phys., 136 (2009), 1105.  doi: 10.1007/s10955-009-9820-3.  Google Scholar

[10]

M. Pulvirenti, The weak-coupling limit of large classical and quantum systems,, in, (2006).   Google Scholar

[11]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273.  doi: 10.1007/s002050050106.  Google Scholar

[1]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[2]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[3]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[4]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[5]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[6]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[7]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[8]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[9]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[10]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[11]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[12]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[13]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[14]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[15]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[16]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[17]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[18]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[20]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]