March  2011, 4(1): 361-384. doi: 10.3934/krm.2011.4.361

Non-Newtonian Couette-Poiseuille flow of a dilute gas

1. 

Département de Physique, Université Moulay Ismaïl, Meknès, Morocco

2. 

Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain

Received  September 2010 Revised  October 2010 Published  January 2011

The steady state of a dilute gas enclosed between two infinite parallel plates in relative motion and under the action of a uniform body force parallel to the plates is considered. The Bhatnagar-Gross-Krook model kinetic equation is analytically solved for this Couette-Poiseuille flow to first order in the force and for arbitrary values of the Knudsen number associated with the shear rate. This allows us to investigate the influence of the external force on the non-Newtonian properties of the Couette flow. Moreover, the Couette-Poiseuille flow is analyzed when the shear-rate Knudsen number and the scaled force are of the same order and terms up to second order are retained. In this way, the transition from the bimodal temperature profile characteristic of the pure force-driven Poiseuille flow to the parabolic profile characteristic of the pure Couette flow through several intermediate stages in the Couette-Poiseuille flow are described. A critical comparison with the Navier-Stokes solution of the problem is carried out.
Citation: Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic & Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361
References:
[1]

M. Alam and V. K. Chikkadi, Velocity distribution function and correlations in a granular Poiseuille flow,, J. Fluid Mech., 653 (2010), 175.  doi: 10.1017/S0022112010000200.  Google Scholar

[2]

M. Alaoui and A. Santos, Poiseuille flow driven by an external force,, Phys. Fluids A, 4 (1992), 1273.  doi: 10.1063/1.858245.  Google Scholar

[3]

K. Aoki, S. Takata and T. Nakanishi, A Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force,, Phys. Rev. E, 65 (2002).  doi: 10.1103/PhysRevE.65.026315.  Google Scholar

[4]

E. Asmolov, N. K. Makashev and V. I. Nosik, Heat transfer between parallel plates in a gas of Maxwellian molecules,, Sov. Phys. Dokl., 24 (1979), 892.   Google Scholar

[5]

P. L. Bhatnagar, E. P. Gross and M. Krook, A model collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,, Phy. Rev., 94 (1954), 511.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[6]

J. J. Brey, A. Santos and J. W. Dufty, Heat and momentum transport far from equilibrium,, Phys. Rev. A, 36 (1987), 2842.  doi: 10.1103/PhysRevA.36.2842.  Google Scholar

[7]

C. Cercignani, "The Boltzmann Equation and Its Applications,'', Springer-Verlag, (1988).   Google Scholar

[8]

C. Cercignani, "Mathematical Methods in Kinetic Theory,'', Plenum Press, (1990).   Google Scholar

[9]

C. Cercignani, M. Lampis and S. Lorenzani, Plane Poiseuille-Couette problem in micro-electro-mechanical systems applications with gas-rarefaction effects,, Phy. Fluids, 18 (2006).  doi: 10.1063/1.2335847.  Google Scholar

[10]

C. Cercignani and F. Sernagiotto, Cylindrical Poiseuille flow of a rarefied gas,, Phys. Fluids, 9 (1966), 40.  doi: 10.1063/1.1761530.  Google Scholar

[11]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Nonuniform Gases,'', Cambridge University Press, (1970).   Google Scholar

[12]

V. Chikkadi and M. Alam, Slip velocity and stresses in granular Poiseuille flow via event-driven simulation,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.021303.  Google Scholar

[13]

J. R. Dorfman and H. van Beijeren, The kinetic theory of gases,, in, (1977), 65.   Google Scholar

[14]

A. I. Erofeev and O. G. Friedlander, Macroscopic models for non-equilibrium flows of monatomic gas and normal solutions,, in, (2007), 117.   Google Scholar

[15]

R. Esposito, J. L. Lebowitz and R. Marra, A hydrodynamic limit of the stationary Boltzmann equation in a slab,, Commun. Math. Phys., 160 (1994), 49.  doi: 10.1007/BF02099789.  Google Scholar

[16]

M. A. Gallis, J. R. Torczynski, D. J. Rader, M. Tij and A. Santos, Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow,, Phys. Fluids, 18 (2006).   Google Scholar

[17]

M. A. Gallis, J. R. Torczynski, D. J. Rader, M. Tij and A. Santos, Analytical and numerical normal solutions of the Boltzmann equation for highly nonequilibrium Fourier and Couette flows,, in, (2007), 251.   Google Scholar

[18]

L. S. García-Colín, R. M. Velasco and F. J. Uribe, Beyond the Navier-Stokes equations: Burnett hydrodynamics,, Phys. Rep., 465 (2008), 149.  doi: 10.1016/j.physrep.2008.04.010.  Google Scholar

[19]

V. Garzó and M. López de Haro, Nonlinear transport for a dilute gas in steady Couette flow,, Phys. Fluids, 9 (1997), 776.  doi: 10.1063/1.869232.  Google Scholar

[20]

V. Garzó and A. Santos, "Kinetic Theory of Gases in Shear Flows. Nonlinear Transport,'', Kluwer Academic Publishers, (2003).   Google Scholar

[21]

S. Hess and M. Malek Mansour, Temperature profile of a dilute gas undergoing a plane Poiseuille flow,, Physica A, 272 (1999), 481.  doi: 10.1016/S0378-4371(99)00254-X.  Google Scholar

[22]

L. P. Kadanoff, G. R. McNamara and G. Zanetti, A Poiseuille viscometer for lattice gas automata,, Complex Syst., 1 (1987), 791.   Google Scholar

[23]

L. P. Kadanoff, G. R. McNamara and G. Zanetti, From automata to fluid flow: Comparisons of simulation and theory,, Phys. Rev. A, 40 (1989), 4527.  doi: 10.1103/PhysRevA.40.4527.  Google Scholar

[24]

C. S. Kim, J. W. Dufty, A. Santos and J. J. Brey, Hilbert-class or "normal'' solutions for stationary heat flow,, Phys. Rev. A, 39 (1989), 328.  doi: 10.1103/PhysRevA.39.328.  Google Scholar

[25]

C. S. Kim, J. W. Dufty, A. Santos and J. J. Brey, Analysis of nonlinear transport in Couette flow,, Phys. Rev A, 40 (1989), 7165.  doi: 10.1103/PhysRevA.40.7165.  Google Scholar

[26]

G. M. Kremer, "An Introduction to the Boltzmann Equation and Transport Processes in Gases,'', Springer, (2010).  doi: 10.1007/978-3-642-11696-4.  Google Scholar

[27]

M. Malek Mansour, F. Baras and A. L. Garcia, On the validity of hydrodynamics in plane Poiseuille flows,, Physica A, 240 (1997), 255.  doi: 10.1016/S0378-4371(97)00149-0.  Google Scholar

[28]

N. K. Makashev and V. I. Nosik, Steady Couette flow (with heat transfer) of a gas of Maxwellian molecules,, Sov. Phys. Dokl., 25 (1981), 589.   Google Scholar

[29]

J. M. Montanero, M. Alaoui, A. Santos and V. Garzó, Monte Carlo simulation of the Boltzmann equation for steady Fourier flow,, Phys. Rev. E, 49 (1994), 367.  doi: 10.1103/PhysRevE.49.367.  Google Scholar

[30]

J. M. Montanero and V. Garzó, Nonlinear Couette flow in a dilute gas: Comparison between theory and molecular dynamics simulation,, Phys. Rev. E, 58 (1998), 1836.  doi: 10.1103/PhysRevE.58.1836.  Google Scholar

[31]

J. M. Montanero, A. Santos and V. Garzó, Monte Carlo simulation of nonlinear Couette flow in a dilute gas,, Phys. Fluids, 12 (2000), 3060.  doi: 10.1063/1.1313563.  Google Scholar

[32]

R. S. Myong, Coupled nonlinear constitutive models for rarefied and microscale gas flows: subtle interplay of kinematics and dissipation effects,, Cont. Mech. Thermodyn., 21 (2009), 389.  doi: 10.1007/s00161-009-0112-6.  Google Scholar

[33]

V. I. Nosik, Heat transfer between parallel plates in a mixture of gases of Maxwellian molecules,, Sov. Phys. Dokl., 25 (1981), 495.   Google Scholar

[34]

V. I. Nosik, Degeneration of the Chapman-Enskog expansion in one-dimensional motions of Maxwellian molecule gases,, in, 13 (1983), 237.   Google Scholar

[35]

T. Ohwada, Y. Sone and K. Aoki, Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules,, Phys. Fluids A, 1 (1989), 2042.  doi: 10.1063/1.857478.  Google Scholar

[36]

M. C. Potter, Stability of plane Couette-Poiseuille flow,, J. Fluid Mech., 24 (1966), 609.  doi: 10.1017/S0022112066000855.  Google Scholar

[37]

D. Risso and P. Cordero, Dilute gas Couette flow: Theory and molecular dynamics simulation,, Phys. Rev. E, 56 (1997), 489.  doi: 10.1103/PhysRevE.56.489.  Google Scholar

[38]

D. Risso and P. Cordero, Generalized hydrodynamics for a Poiseuille flow: theory and simulations,, Phys. Rev. E, 58 (1998), 546.  doi: 10.1103/PhysRevE.58.546.  Google Scholar

[39]

M. Sabbane, M. Tij and A. Santos, Maxwellian gas undergoing a stationary Poiseuille flow in a pipe,, Physica A, 327 (2003), 264.  doi: 10.1016/S0378-4371(03)00513-2.  Google Scholar

[40]

A. Santos, Solutions of the moment hierarchy in the kinetic theory of Maxwell models,, Cont. Mech. Thermodyn., 21 (2009), 361.  doi: 10.1007/s00161-009-0113-5.  Google Scholar

[41]

A. Santos, J. J. Brey and V. Garzó, Kinetic model for steady heat flow,, Phys. Rev. A, 34 (1986), 5047.  doi: 10.1103/PhysRevA.34.5047.  Google Scholar

[42]

A. Santos, J. J. Brey, C. S. Kim and J. W. Dufty, Velocity distribution for a gas with steady heat flow,, Phys. Rev. A, 39 (1989), 320.  doi: 10.1103/PhysRevA.39.320.  Google Scholar

[43]

A. Santos, V. Garzó and J. J. Brey, Comparison between the homogeneous-shear and the sliding-boundary methods to produce shear flow,, Phys. Rev. A, 46 (1992), 8018.  doi: 10.1103/PhysRevA.46.8018.  Google Scholar

[44]

A. Santos and M. Tij, Gravity-driven Poiseuille flow in dilute gases. Elastic and inelastic collisions,, in, (2006), 53.   Google Scholar

[45]

Y. Sone, Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers,, in, (1991), 19.   Google Scholar

[46]

Y. Sone, Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit,, Annu. Rev. Fluid Mech., 32 (2000), 779.  doi: 10.1146/annurev.fluid.32.1.779.  Google Scholar

[47]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'', Birkhäuser, (2002).   Google Scholar

[48]

H. Struchtrup, "Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory,'', Springer, (2005).   Google Scholar

[49]

H. Struchtrup and M Torrilhon, Higher-order effects in rarefied channel flows,, Phys. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.046301.  Google Scholar

[50]

S. A. Suslov and T. D. Tran, Revisiting plane Couette-Poiseuille flows of a piezo-viscous fluid,, J. Non-Newton. Fluid Mech., 154 (2006), 170.   Google Scholar

[51]

P. Taheri, M. Torrilhon and H. Struchtrup, Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations,, Phys. Fluids, 21 (2009).  doi: 10.1063/1.3064123.  Google Scholar

[52]

R. Tehver, F. Toigo, J. Koplik and J. R. Banavar, Thermal walls in computer simulations,, Phys. Rev. E, 57 (1998).  doi: 10.1103/PhysRevE.57.R17.  Google Scholar

[53]

E. M. Thurlow and J. C. Klewicki, Experimental study of turbulent Poiseuille-Couette flow,, Phys. Fluids, 12 (2000), 865.  doi: 10.1063/1.870341.  Google Scholar

[54]

M. Tij, V. Garzó and A. Santos, Influence of gravity on nonlinear transport in the planar Couette flow,, Phys. Fluids, 11 (1999), 893.  doi: 10.1063/1.869960.  Google Scholar

[55]

M. Tij, M. Sabbane and A. Santos, Nonlinear Poiseuille flow in a gas,, Phys. Fluids, 10 (1998), 1021.  doi: 10.1063/1.869621.  Google Scholar

[56]

M. Tij and A. Santos, Perturbation analysis of a stationary nonequilibrium flow generated by an external force,, J. Stat. Phys., 76 (1994), 1399.  doi: 10.1007/BF02187068.  Google Scholar

[57]

M. Tij and A. Santos, Combined heat and momentum transport in a dilute gas,, Phys. Fluids, 7 (1995), 2858.  doi: 10.1063/1.868662.  Google Scholar

[58]

M. Tij and A. Santos, Non-Newtonian Poiseuille flow of a gas in a pipe,, Physica A, 289 (2001), 336.  doi: 10.1016/S0378-4371(00)00405-2.  Google Scholar

[59]

M. Tij and A. Santos, Poiseuille flow in a heated granular gas,, J. Stat. Phys., 117 (2004), 901.  doi: 10.1007/s10955-004-5710-x.  Google Scholar

[60]

M. Tij, E. E. Tahiri, J. M. Montanero, V. Garzó, A. Santos and J. W. Dufty, Nonlinear Couette flow in a low density granular gas,, J. Stat. Phys., 103 (2001), 1035.  doi: 10.1023/A:1010317207358.  Google Scholar

[61]

B. D. Todd and D. J. Evans, Temperature profile for Poiseuille flow,, Phys. Rev. E, 55 (1997), 2800.  doi: 10.1103/PhysRevE.55.2800.  Google Scholar

[62]

K. P. Travis, B. D. Todd and D. J. Evans, Poiseuille flow of molecular fluids,, Physica A, 240 (1997), 315.  doi: 10.1016/S0378-4371(97)00155-6.  Google Scholar

[63]

C. Truesdell and R. G. Muncaster, "Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas,'', Academic Press, (1980).   Google Scholar

[64]

F. J. Uribe and A. L. Garcia, Burnett description for plane Poiseuille flow,, Phys. Rev. E, 60 (1999), 4063.  doi: 10.1103/PhysRevE.60.4063.  Google Scholar

[65]

F. Vega Reyes, A. Santos and V. Garzó, Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic Fourier flow have in common?,, Phys. Rev. Lett., 104 (2010).  doi: 10.1103/PhysRevLett.104.028001.  Google Scholar

[66]

P. Welander, On the temperature jump in a rarefied gas,, Akiv för Fysik, 7 (1954), 507.   Google Scholar

[67]

K. Xu, Super-Burnett solutions for Poiseuille flow,, Phys. Fluids, 15 (2003), 2077.  doi: 10.1063/1.1577564.  Google Scholar

[68]

Y. Zheng, A. L. Garcia and B. J. Alder, Comparison of kinetic theory and hydrodynamics for Poiseuille flow,, J. Stat. Phys., 109 (2002), 495.  doi: 10.1023/A:1020498111819.  Google Scholar

show all references

References:
[1]

M. Alam and V. K. Chikkadi, Velocity distribution function and correlations in a granular Poiseuille flow,, J. Fluid Mech., 653 (2010), 175.  doi: 10.1017/S0022112010000200.  Google Scholar

[2]

M. Alaoui and A. Santos, Poiseuille flow driven by an external force,, Phys. Fluids A, 4 (1992), 1273.  doi: 10.1063/1.858245.  Google Scholar

[3]

K. Aoki, S. Takata and T. Nakanishi, A Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force,, Phys. Rev. E, 65 (2002).  doi: 10.1103/PhysRevE.65.026315.  Google Scholar

[4]

E. Asmolov, N. K. Makashev and V. I. Nosik, Heat transfer between parallel plates in a gas of Maxwellian molecules,, Sov. Phys. Dokl., 24 (1979), 892.   Google Scholar

[5]

P. L. Bhatnagar, E. P. Gross and M. Krook, A model collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,, Phy. Rev., 94 (1954), 511.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[6]

J. J. Brey, A. Santos and J. W. Dufty, Heat and momentum transport far from equilibrium,, Phys. Rev. A, 36 (1987), 2842.  doi: 10.1103/PhysRevA.36.2842.  Google Scholar

[7]

C. Cercignani, "The Boltzmann Equation and Its Applications,'', Springer-Verlag, (1988).   Google Scholar

[8]

C. Cercignani, "Mathematical Methods in Kinetic Theory,'', Plenum Press, (1990).   Google Scholar

[9]

C. Cercignani, M. Lampis and S. Lorenzani, Plane Poiseuille-Couette problem in micro-electro-mechanical systems applications with gas-rarefaction effects,, Phy. Fluids, 18 (2006).  doi: 10.1063/1.2335847.  Google Scholar

[10]

C. Cercignani and F. Sernagiotto, Cylindrical Poiseuille flow of a rarefied gas,, Phys. Fluids, 9 (1966), 40.  doi: 10.1063/1.1761530.  Google Scholar

[11]

S. Chapman and T. G. Cowling, "The Mathematical Theory of Nonuniform Gases,'', Cambridge University Press, (1970).   Google Scholar

[12]

V. Chikkadi and M. Alam, Slip velocity and stresses in granular Poiseuille flow via event-driven simulation,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.021303.  Google Scholar

[13]

J. R. Dorfman and H. van Beijeren, The kinetic theory of gases,, in, (1977), 65.   Google Scholar

[14]

A. I. Erofeev and O. G. Friedlander, Macroscopic models for non-equilibrium flows of monatomic gas and normal solutions,, in, (2007), 117.   Google Scholar

[15]

R. Esposito, J. L. Lebowitz and R. Marra, A hydrodynamic limit of the stationary Boltzmann equation in a slab,, Commun. Math. Phys., 160 (1994), 49.  doi: 10.1007/BF02099789.  Google Scholar

[16]

M. A. Gallis, J. R. Torczynski, D. J. Rader, M. Tij and A. Santos, Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow,, Phys. Fluids, 18 (2006).   Google Scholar

[17]

M. A. Gallis, J. R. Torczynski, D. J. Rader, M. Tij and A. Santos, Analytical and numerical normal solutions of the Boltzmann equation for highly nonequilibrium Fourier and Couette flows,, in, (2007), 251.   Google Scholar

[18]

L. S. García-Colín, R. M. Velasco and F. J. Uribe, Beyond the Navier-Stokes equations: Burnett hydrodynamics,, Phys. Rep., 465 (2008), 149.  doi: 10.1016/j.physrep.2008.04.010.  Google Scholar

[19]

V. Garzó and M. López de Haro, Nonlinear transport for a dilute gas in steady Couette flow,, Phys. Fluids, 9 (1997), 776.  doi: 10.1063/1.869232.  Google Scholar

[20]

V. Garzó and A. Santos, "Kinetic Theory of Gases in Shear Flows. Nonlinear Transport,'', Kluwer Academic Publishers, (2003).   Google Scholar

[21]

S. Hess and M. Malek Mansour, Temperature profile of a dilute gas undergoing a plane Poiseuille flow,, Physica A, 272 (1999), 481.  doi: 10.1016/S0378-4371(99)00254-X.  Google Scholar

[22]

L. P. Kadanoff, G. R. McNamara and G. Zanetti, A Poiseuille viscometer for lattice gas automata,, Complex Syst., 1 (1987), 791.   Google Scholar

[23]

L. P. Kadanoff, G. R. McNamara and G. Zanetti, From automata to fluid flow: Comparisons of simulation and theory,, Phys. Rev. A, 40 (1989), 4527.  doi: 10.1103/PhysRevA.40.4527.  Google Scholar

[24]

C. S. Kim, J. W. Dufty, A. Santos and J. J. Brey, Hilbert-class or "normal'' solutions for stationary heat flow,, Phys. Rev. A, 39 (1989), 328.  doi: 10.1103/PhysRevA.39.328.  Google Scholar

[25]

C. S. Kim, J. W. Dufty, A. Santos and J. J. Brey, Analysis of nonlinear transport in Couette flow,, Phys. Rev A, 40 (1989), 7165.  doi: 10.1103/PhysRevA.40.7165.  Google Scholar

[26]

G. M. Kremer, "An Introduction to the Boltzmann Equation and Transport Processes in Gases,'', Springer, (2010).  doi: 10.1007/978-3-642-11696-4.  Google Scholar

[27]

M. Malek Mansour, F. Baras and A. L. Garcia, On the validity of hydrodynamics in plane Poiseuille flows,, Physica A, 240 (1997), 255.  doi: 10.1016/S0378-4371(97)00149-0.  Google Scholar

[28]

N. K. Makashev and V. I. Nosik, Steady Couette flow (with heat transfer) of a gas of Maxwellian molecules,, Sov. Phys. Dokl., 25 (1981), 589.   Google Scholar

[29]

J. M. Montanero, M. Alaoui, A. Santos and V. Garzó, Monte Carlo simulation of the Boltzmann equation for steady Fourier flow,, Phys. Rev. E, 49 (1994), 367.  doi: 10.1103/PhysRevE.49.367.  Google Scholar

[30]

J. M. Montanero and V. Garzó, Nonlinear Couette flow in a dilute gas: Comparison between theory and molecular dynamics simulation,, Phys. Rev. E, 58 (1998), 1836.  doi: 10.1103/PhysRevE.58.1836.  Google Scholar

[31]

J. M. Montanero, A. Santos and V. Garzó, Monte Carlo simulation of nonlinear Couette flow in a dilute gas,, Phys. Fluids, 12 (2000), 3060.  doi: 10.1063/1.1313563.  Google Scholar

[32]

R. S. Myong, Coupled nonlinear constitutive models for rarefied and microscale gas flows: subtle interplay of kinematics and dissipation effects,, Cont. Mech. Thermodyn., 21 (2009), 389.  doi: 10.1007/s00161-009-0112-6.  Google Scholar

[33]

V. I. Nosik, Heat transfer between parallel plates in a mixture of gases of Maxwellian molecules,, Sov. Phys. Dokl., 25 (1981), 495.   Google Scholar

[34]

V. I. Nosik, Degeneration of the Chapman-Enskog expansion in one-dimensional motions of Maxwellian molecule gases,, in, 13 (1983), 237.   Google Scholar

[35]

T. Ohwada, Y. Sone and K. Aoki, Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules,, Phys. Fluids A, 1 (1989), 2042.  doi: 10.1063/1.857478.  Google Scholar

[36]

M. C. Potter, Stability of plane Couette-Poiseuille flow,, J. Fluid Mech., 24 (1966), 609.  doi: 10.1017/S0022112066000855.  Google Scholar

[37]

D. Risso and P. Cordero, Dilute gas Couette flow: Theory and molecular dynamics simulation,, Phys. Rev. E, 56 (1997), 489.  doi: 10.1103/PhysRevE.56.489.  Google Scholar

[38]

D. Risso and P. Cordero, Generalized hydrodynamics for a Poiseuille flow: theory and simulations,, Phys. Rev. E, 58 (1998), 546.  doi: 10.1103/PhysRevE.58.546.  Google Scholar

[39]

M. Sabbane, M. Tij and A. Santos, Maxwellian gas undergoing a stationary Poiseuille flow in a pipe,, Physica A, 327 (2003), 264.  doi: 10.1016/S0378-4371(03)00513-2.  Google Scholar

[40]

A. Santos, Solutions of the moment hierarchy in the kinetic theory of Maxwell models,, Cont. Mech. Thermodyn., 21 (2009), 361.  doi: 10.1007/s00161-009-0113-5.  Google Scholar

[41]

A. Santos, J. J. Brey and V. Garzó, Kinetic model for steady heat flow,, Phys. Rev. A, 34 (1986), 5047.  doi: 10.1103/PhysRevA.34.5047.  Google Scholar

[42]

A. Santos, J. J. Brey, C. S. Kim and J. W. Dufty, Velocity distribution for a gas with steady heat flow,, Phys. Rev. A, 39 (1989), 320.  doi: 10.1103/PhysRevA.39.320.  Google Scholar

[43]

A. Santos, V. Garzó and J. J. Brey, Comparison between the homogeneous-shear and the sliding-boundary methods to produce shear flow,, Phys. Rev. A, 46 (1992), 8018.  doi: 10.1103/PhysRevA.46.8018.  Google Scholar

[44]

A. Santos and M. Tij, Gravity-driven Poiseuille flow in dilute gases. Elastic and inelastic collisions,, in, (2006), 53.   Google Scholar

[45]

Y. Sone, Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers,, in, (1991), 19.   Google Scholar

[46]

Y. Sone, Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit,, Annu. Rev. Fluid Mech., 32 (2000), 779.  doi: 10.1146/annurev.fluid.32.1.779.  Google Scholar

[47]

Y. Sone, "Kinetic Theory and Fluid Dynamics,'', Birkhäuser, (2002).   Google Scholar

[48]

H. Struchtrup, "Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory,'', Springer, (2005).   Google Scholar

[49]

H. Struchtrup and M Torrilhon, Higher-order effects in rarefied channel flows,, Phys. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.046301.  Google Scholar

[50]

S. A. Suslov and T. D. Tran, Revisiting plane Couette-Poiseuille flows of a piezo-viscous fluid,, J. Non-Newton. Fluid Mech., 154 (2006), 170.   Google Scholar

[51]

P. Taheri, M. Torrilhon and H. Struchtrup, Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations,, Phys. Fluids, 21 (2009).  doi: 10.1063/1.3064123.  Google Scholar

[52]

R. Tehver, F. Toigo, J. Koplik and J. R. Banavar, Thermal walls in computer simulations,, Phys. Rev. E, 57 (1998).  doi: 10.1103/PhysRevE.57.R17.  Google Scholar

[53]

E. M. Thurlow and J. C. Klewicki, Experimental study of turbulent Poiseuille-Couette flow,, Phys. Fluids, 12 (2000), 865.  doi: 10.1063/1.870341.  Google Scholar

[54]

M. Tij, V. Garzó and A. Santos, Influence of gravity on nonlinear transport in the planar Couette flow,, Phys. Fluids, 11 (1999), 893.  doi: 10.1063/1.869960.  Google Scholar

[55]

M. Tij, M. Sabbane and A. Santos, Nonlinear Poiseuille flow in a gas,, Phys. Fluids, 10 (1998), 1021.  doi: 10.1063/1.869621.  Google Scholar

[56]

M. Tij and A. Santos, Perturbation analysis of a stationary nonequilibrium flow generated by an external force,, J. Stat. Phys., 76 (1994), 1399.  doi: 10.1007/BF02187068.  Google Scholar

[57]

M. Tij and A. Santos, Combined heat and momentum transport in a dilute gas,, Phys. Fluids, 7 (1995), 2858.  doi: 10.1063/1.868662.  Google Scholar

[58]

M. Tij and A. Santos, Non-Newtonian Poiseuille flow of a gas in a pipe,, Physica A, 289 (2001), 336.  doi: 10.1016/S0378-4371(00)00405-2.  Google Scholar

[59]

M. Tij and A. Santos, Poiseuille flow in a heated granular gas,, J. Stat. Phys., 117 (2004), 901.  doi: 10.1007/s10955-004-5710-x.  Google Scholar

[60]

M. Tij, E. E. Tahiri, J. M. Montanero, V. Garzó, A. Santos and J. W. Dufty, Nonlinear Couette flow in a low density granular gas,, J. Stat. Phys., 103 (2001), 1035.  doi: 10.1023/A:1010317207358.  Google Scholar

[61]

B. D. Todd and D. J. Evans, Temperature profile for Poiseuille flow,, Phys. Rev. E, 55 (1997), 2800.  doi: 10.1103/PhysRevE.55.2800.  Google Scholar

[62]

K. P. Travis, B. D. Todd and D. J. Evans, Poiseuille flow of molecular fluids,, Physica A, 240 (1997), 315.  doi: 10.1016/S0378-4371(97)00155-6.  Google Scholar

[63]

C. Truesdell and R. G. Muncaster, "Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas,'', Academic Press, (1980).   Google Scholar

[64]

F. J. Uribe and A. L. Garcia, Burnett description for plane Poiseuille flow,, Phys. Rev. E, 60 (1999), 4063.  doi: 10.1103/PhysRevE.60.4063.  Google Scholar

[65]

F. Vega Reyes, A. Santos and V. Garzó, Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic Fourier flow have in common?,, Phys. Rev. Lett., 104 (2010).  doi: 10.1103/PhysRevLett.104.028001.  Google Scholar

[66]

P. Welander, On the temperature jump in a rarefied gas,, Akiv för Fysik, 7 (1954), 507.   Google Scholar

[67]

K. Xu, Super-Burnett solutions for Poiseuille flow,, Phys. Fluids, 15 (2003), 2077.  doi: 10.1063/1.1577564.  Google Scholar

[68]

Y. Zheng, A. L. Garcia and B. J. Alder, Comparison of kinetic theory and hydrodynamics for Poiseuille flow,, J. Stat. Phys., 109 (2002), 495.  doi: 10.1023/A:1020498111819.  Google Scholar

[1]

Changli Yuan, Mojdeh Delshad, Mary F. Wheeler. Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks & Heterogeneous Media, 2010, 5 (3) : 583-602. doi: 10.3934/nhm.2010.5.583

[2]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[3]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037

[4]

Hong Zhou, M. Gregory Forest. Anchoring distortions coupled with plane Couette & Poiseuille flows of nematic polymers in viscous solvents: Morphology in molecular orientation, stress & flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 407-425. doi: 10.3934/dcdsb.2006.6.407

[5]

Igor Chueshov, Tamara Fastovska. On interaction of circular cylindrical shells with a Poiseuille type flow. Evolution Equations & Control Theory, 2016, 5 (4) : 605-629. doi: 10.3934/eect.2016021

[6]

Liudmila A. Pozhar. Poiseuille flow of nanofluids confined in slit nanopores. Conference Publications, 2001, 2001 (Special) : 319-326. doi: 10.3934/proc.2001.2001.319

[7]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Ghost effect by curvature in planar Couette flow. Kinetic & Related Models, 2011, 4 (1) : 109-138. doi: 10.3934/krm.2011.4.109

[8]

Lars Diening, Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 255-268. doi: 10.3934/dcdss.2010.3.255

[9]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Z. Zgurovsky. Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1155-1176. doi: 10.3934/dcdsb.2018146

[10]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[11]

Aneta Wróblewska-Kamińska. Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2565-2592. doi: 10.3934/dcds.2013.33.2565

[12]

Emil Novruzov. On existence and nonexistence of the positive solutions of non-newtonian filtration equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 719-730. doi: 10.3934/cpaa.2011.10.719

[13]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[14]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212

[15]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Erratum to: Ghost effect by curvature in planar Couette flow [1]. Kinetic & Related Models, 2012, 5 (3) : 669-672. doi: 10.3934/krm.2012.5.669

[16]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[17]

María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012

[18]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

[19]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[20]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]