Citation: |
[1] |
C. Cercignani, "The Boltzmann Equation And Its Applications," Springer-Verlag, 1987. |
[2] |
C. Cercignani, "Mathematical Methods in Kinetic Theory," Springer-Verlag, 1990. |
[3] |
C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Springer-Verlag, 1994. |
[4] |
C. Cercignani, V. I. Gerasimenko and D. Ya. Petrina, "Many-Particle Dynamics and Kinetic Equations," Kluwer Acad. Publ., 1997. |
[5] |
R. Adami, F. Golse and A. Teta, Rigorous derivation of the cubic NLS in dimension one, Journal of Statistical Physics, 127 (2007), 1193-1220.doi: 10.1007/s10955-006-9271-z. |
[6] |
A. Arnold, Mathematical properties of quantum evolution equation, Lecture Notes in Mathematics, 1946 (2008), 45-109.doi: 10.1007/978-3-540-79574-2. |
[7] |
C. Bardos, F. Golse, A. D. Gottlieb and N. J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, Journal de Mathématiques Pures et Appliqués, 82 (2003), 665-683.doi: 10.1016/S0021-7824(03)00023-0. |
[8] |
J. Fröhlich, S. Graffi and S. Schwarz, Mean-field and classical limit of many-body Schrödinger dynamics for bosons, Communications in Mathematical Physics, 271 (2007), 681-697.doi: 10.1007/s00220-007-0207-5. |
[9] |
A. Michelangeli, Strengthened convergence of marginals to the cubic nonlinear Schrödinger equation, Kinetic and Related Models, 3 (2010), 457–-471.doi: 10.3934/krm.2010.3.457. |
[10] |
F. Pezzotti and M. Pulvirenti, Mean-field limit and semiclassical expansion of quantum particle system, Annales Henri Poincaré, 10 (2009), 145-187.doi: 10.1007/s00023-009-0404-1. |
[11] |
D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, A short review on the derivation of the nonlinear quantum Boltzmann equations, Communications in Mathematical Sciences, 5 (2007), 55-71. |
[12] |
L. Erdös, M. Salmhofer and H.-T. Yau, On the quantum Boltzmann equation, Journal of Statistical Physics, 116 (2004), 367-380.doi: 10.1023/B:JOSS.0000037224.56191.ed. |
[13] |
G. Borgioli and V. I. Gerasimenko, Initial-value problem of the quantum dual BBGKY hierarchy, Nuovo Cimento, 33 C (2010), 71-78.doi: 10.1393/ncc/i2010-10564-6. |
[14] |
G. Borgioli and V. I. Gerasimenko, The dual BBGKY hierarchy for the evolution of observables, Riv. Mat. Univ. Parma, 4 (2001), 251-267.doi: 10.1393/ncc/i2010-10564-6. |
[15] |
M. M. Bogolyubov, "Lectures on Quantum Statistics. Problems of Statistical Mechanics of Quantum Systems," (Ukrainian) Rad. Shkola, 1949. |
[16] |
H. Spohn, Kinetic equations from Hamiltonian dynamics, Reviews of Modern Physics, 52 (1980), 569-615.doi: 10.1103/RevModPhys.52.569. |
[17] |
R. Dautray and J. L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology," 5, Springer-Verlag, 1992. |
[18] |
D. Ya. Petrina, "Mathematical Foundations of Quantum Statistical Mechanics. Continuous Systems," Kluwer Acad. Publ., 1995. |
[19] |
V. I. Gerasimenko and V. O. Shtyk, Evolution of correlations of quantum many-particle systems, J. Stat. Mech. Theory Exp., 3 (2008), P03007.doi: 10.1088/1742-5468/2008/03/P03007. |
[20] |
O. Bratelli and D. W. Robinson, "Operator Algebras and Quantum Statistical Mechanics," 2, Springer, 1997. |
[21] |
V. I. Gerasimenko, Groups of operators for evolution equations of quantum many-particle systems, Operator Theory: Adv. and Appl., 191 (2009), 341-355. |
[22] |
V. I. Gerasimenko, T. V. Ryabukha and M. O. Stashenko, On the structure of expansions for the BBGKY hierarchy solutions, J. Phys. A: Math. Gen., 37 (2004), 9861-9872.doi: 10.1088/0305-4470/37/42/002. |
[23] |
J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications," Springer, 2006. |
[24] |
V. I. Gerasimenko and Zh. A. Tsvir, A description of the evolution of quantum states by means of the kinetic equation, J. Phys. A: Math. Theor., v. 43, 485203 (19pp), 2010.doi: 10.1088/1751-8113/43/48/485203. |
[25] |
V. I. Gerasimenko and D. O. Polishchuk, Dynamics of correlations of Bose and Fermi particles, Math. Meth. Appl. Sci., 33 (2011), 76-93.doi: 10.1002/mma.1336. |