\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Heisenberg picture of quantum kinetic evolution in mean-field limit

Abstract Related Papers Cited by
  • We develop a rigorous formalism for the description of the evolution of observables of quantum systems of particles in the mean-field scaling limit. The corresponding asymptotics of a solution of the initial-value problem of the dual quantum BBGKY hierarchy is constructed. Moreover, links of the evolution of marginal observables and the evolution of quantum states described in terms of a one-particle marginal density operator are established. Such approach gives the alternative description of the kinetic evolution of quantum many-particle systems.
    Mathematics Subject Classification: Primary: 35Q40; Secondary: 47d06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Cercignani, "The Boltzmann Equation And Its Applications," Springer-Verlag, 1987.

    [2]

    C. Cercignani, "Mathematical Methods in Kinetic Theory," Springer-Verlag, 1990.

    [3]

    C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases," Springer-Verlag, 1994.

    [4]

    C. Cercignani, V. I. Gerasimenko and D. Ya. Petrina, "Many-Particle Dynamics and Kinetic Equations," Kluwer Acad. Publ., 1997.

    [5]

    R. Adami, F. Golse and A. Teta, Rigorous derivation of the cubic NLS in dimension one, Journal of Statistical Physics, 127 (2007), 1193-1220.doi: 10.1007/s10955-006-9271-z.

    [6]

    A. Arnold, Mathematical properties of quantum evolution equation, Lecture Notes in Mathematics, 1946 (2008), 45-109.doi: 10.1007/978-3-540-79574-2.

    [7]

    C. Bardos, F. Golse, A. D. Gottlieb and N. J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, Journal de Mathématiques Pures et Appliqués, 82 (2003), 665-683.doi: 10.1016/S0021-7824(03)00023-0.

    [8]

    J. Fröhlich, S. Graffi and S. Schwarz, Mean-field and classical limit of many-body Schrödinger dynamics for bosons, Communications in Mathematical Physics, 271 (2007), 681-697.doi: 10.1007/s00220-007-0207-5.

    [9]

    A. Michelangeli, Strengthened convergence of marginals to the cubic nonlinear Schrödinger equation, Kinetic and Related Models, 3 (2010), 457–-471.doi: 10.3934/krm.2010.3.457.

    [10]

    F. Pezzotti and M. Pulvirenti, Mean-field limit and semiclassical expansion of quantum particle system, Annales Henri Poincaré, 10 (2009), 145-187.doi: 10.1007/s00023-009-0404-1.

    [11]

    D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, A short review on the derivation of the nonlinear quantum Boltzmann equations, Communications in Mathematical Sciences, 5 (2007), 55-71.

    [12]

    L. Erdös, M. Salmhofer and H.-T. Yau, On the quantum Boltzmann equation, Journal of Statistical Physics, 116 (2004), 367-380.doi: 10.1023/B:JOSS.0000037224.56191.ed.

    [13]

    G. Borgioli and V. I. Gerasimenko, Initial-value problem of the quantum dual BBGKY hierarchy, Nuovo Cimento, 33 C (2010), 71-78.doi: 10.1393/ncc/i2010-10564-6.

    [14]

    G. Borgioli and V. I. Gerasimenko, The dual BBGKY hierarchy for the evolution of observables, Riv. Mat. Univ. Parma, 4 (2001), 251-267.doi: 10.1393/ncc/i2010-10564-6.

    [15]

    M. M. Bogolyubov, "Lectures on Quantum Statistics. Problems of Statistical Mechanics of Quantum Systems," (Ukrainian) Rad. Shkola, 1949.

    [16]

    H. Spohn, Kinetic equations from Hamiltonian dynamics, Reviews of Modern Physics, 52 (1980), 569-615.doi: 10.1103/RevModPhys.52.569.

    [17]

    R. Dautray and J. L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology," 5, Springer-Verlag, 1992.

    [18]

    D. Ya. Petrina, "Mathematical Foundations of Quantum Statistical Mechanics. Continuous Systems," Kluwer Acad. Publ., 1995.

    [19]

    V. I. Gerasimenko and V. O. Shtyk, Evolution of correlations of quantum many-particle systems, J. Stat. Mech. Theory Exp., 3 (2008), P03007.doi: 10.1088/1742-5468/2008/03/P03007.

    [20]

    O. Bratelli and D. W. Robinson, "Operator Algebras and Quantum Statistical Mechanics," 2, Springer, 1997.

    [21]

    V. I. Gerasimenko, Groups of operators for evolution equations of quantum many-particle systems, Operator Theory: Adv. and Appl., 191 (2009), 341-355.

    [22]

    V. I. Gerasimenko, T. V. Ryabukha and M. O. Stashenko, On the structure of expansions for the BBGKY hierarchy solutions, J. Phys. A: Math. Gen., 37 (2004), 9861-9872.doi: 10.1088/0305-4470/37/42/002.

    [23]

    J. Banasiak and L. Arlotti, "Perturbations of Positive Semigroups with Applications," Springer, 2006.

    [24]

    V. I. Gerasimenko and Zh. A. Tsvir, A description of the evolution of quantum states by means of the kinetic equation, J. Phys. A: Math. Theor., v. 43, 485203 (19pp), 2010.doi: 10.1088/1751-8113/43/48/485203.

    [25]

    V. I. Gerasimenko and D. O. Polishchuk, Dynamics of correlations of Bose and Fermi particles, Math. Meth. Appl. Sci., 33 (2011), 76-93.doi: 10.1002/mma.1336.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return